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Surface Texture Recognition by Deep Learning-Enhanced
Tactile Sensing

Youcan Yan, Zhe Hu, Yajing Shen,* and Jia Pan*

1. Introduction

Surface texture, a combination of roughness (nano- and micro-
roughness), waviness (macroroughness), lay, and flaw, provides
important features for humans to discriminate different materi-
als, and the automation of surface texture recognition has
been of increasing interest in various areas, such as textile

manufacturing,[1] defect detection,[2,3] and
robotic manipulation.[4,5] Traditionally,
surface textures are inspected by devices
such as roughometers and microscopes,
which are bulky and time-consuming to
use. With the recent advances in computer
vision, vision-based methods[3,6,7] have
gained increasing popularity in texture rec-
ognition due to their high spatial resolution
and excellent recognition efficiency.
However, these methods rely on the indi-
rect visual effects of the surface texture
rather than directly measuring the mechan-
ical properties of the surface, thus lacking
the key tactile cues for perceiving the mate-
rial, such as thermal conductivity, com-
pressibility, roughness, and so on. To
overcome this limitation, involving tactile
sensing in the surface texture recognition
would be beneficial.

Recently, tremendous efforts have been
made to develop artificial tactile sensors based on different work-
ing mechanisms, including piezoelectricity,[8–10] piezoresist-
ance,[11–16] capacitance,[17,18] strain gauges,[19] optics,[20–22] and
magnetics,[23–25] within which machine learning technologies
have played a critical role to extract useful information from
raw tactile data for pattern recognition. Mami et al.[10] reported
a tactile sensor system that is based on a piezoelectric film for
Braille characters recognition, where a 91.45% recognition accu-
racy was achieved by using the support vector machine (SVM)
and multilayer perceptron (MLP). To further improve the recog-
nition accuracy, researchers have recently developed tactile sen-
sor arrays using a wide variety of advanced materials.[11,13,17,18]

However, when reading continuous lines of Braille texts, most of
these sensors have to discontinuously press each individual
Braille character and use each of the six taxels in the sensor array
to check whether a dot is raised or not in a six-dot Braille cell.
This leads to a high device complexity and low reading efficiency.
Therefore, a more compact tactile sensor and a more efficient
Braille recognition method are required. In addition to Braille
recognition, tactile sensors have also been widely used for fabric
recognition by using machine learning algorithms. Florian
et al.[19] reported a texture recognition method based on a 3-axis
force sensor, in which the MLP was used for classifying textures
of ten types of papers and a recognition accuracy of around 60%
was achieved. By using a magnetostrictive tactile sensor and the
extreme learning machine (ELM), Zheng et al.[23] achieved a rec-
ognition accuracy of 93% for five types of fabrics. More recently, a
high recognition accuracy of 99% was achieved for 12 types of
fabrics by Chun et al.,[12] in which the SVM was used for
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Tactile perception is a primary sensing channel for both humans and robots to be
conscious of the surface properties of an object. Due to the unique functionalities
of mechanoreceptors in human skin, humans can easily distinguish materials
with different surface characteristics (e.g., compressibility, roughness, etc.) by
simply pressing and sliding the fingertip over the samples. However, how to
achieve such delicate texture recognition for robots remains an open challenge
due to the lack of skin-comparable tactile sensing systems and smart pattern
recognition algorithms. Herein, a novel texture recognition method is proposed
by designing an arc-shaped soft tactile sensor and a bidirectional long short-term
memory (LSTM) model with the attention mechanism. By using the proposed
method, a respective recognition accuracy of 97% for Braille characters and 99%
for 60 types of fabrics have been achieved, revealing the effectiveness of our
method in surface texture recognition and the potential benefit to various
applications, such as Braille reading for visually impaired people and defect
detection in the textile industry.
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classification based on the tactile outputs of a piezoresistive film.
However, most of these methods require manual feature selec-
tion or extraction to reduce the data dimension (see Table 1),
which could be tedious in practical applications.

Here, we propose a novel texture recognition method by
designing an arc-shaped soft tactile sensor (built upon our pre-
vious work[26]) and an attention-based long short-term memory
(LSTM) model, which can efficiently recognize both Braille char-
acters and fabrics with high accuracy. Different from traditional
tactile sensors that can only characterize the surface texture with
a 1D feature, such as resistance, capacitance, or light intensity,
our proposed sensor is magnetic-based and thus can provide 3D
feature outputs in terms of the 3-axis magnetic flux densities,
which could convey richer contact information in both normal
and shear directions during sliding.[27] Moreover, the sequential
outputs of the sensor can be directly fed into the proposed LSTM
model with no need for handcrafting features due to the special
architecture of recurrent neural networks, which is simple and
efficient to implement. By using the proposed method, we have
achieved a recognition accuracy of 99% for 60 types of fabrics. A
real-time recognition accuracy of 97% is also achieved for Braille
characters by natural and continuous sliding (rather than discon-
tinuous pressing of existing tactile sensors[11,13,17,18]), which is
comparable with that of proficient human readers.[28]

2. Results and Discussions

2.1. Arc-shaped Tactile Sensor Design

The tactile sensor is composed of a flexible magnetic film (mix-
ture of polydimethylsiloxane [PDMS] and neodymium [NdFeB]
powders) and a Hall sensor embedded on the printed circuit
board, with a silicone elastomer sheet (Ecoflex 00-50) sandwiched
in between, as shown in Figure 1A (also see Figure 3B). When an
external force is applied to the flexible magnetic film, the change
in magnetic flux densities due to the deformation of the flexible
film would be sensed by the Hall sensor. Here, the magnetic film
is magnetized sinusoidally (in Halbach arrays) with multiple
alternate north–south poles, so that the magnetic field is
strengthened on the one side (strong side, toward the Hall sen-
sor) and canceled to nearly zero on the other side (weak side,
toward the object to be touched).[29] At the same time, we align

the centers of the magnetic pole and the Hall sensor to obtain the
largest measurement range of the magnetic flux density along
the z axis (Bz) as well as a symmetric measurement range of
the magnetic flux density along the x axis (Bx) simultaneously;
Bz and Bx will change in proportion to the sensor deformation
along the normal direction (i.e., the z axis) and the shear direc-
tion (i.e., the x axis), respectively. Such an arrangement is impor-
tant for the sensor to “feel” the texture of a material via tactile
interaction, where more details can be found in Section 2.2
and 2.3.

As shown in Figure 1A, we design our sensor as an arc-shaped
tip (with radius �6 mm) similar to the human fingerpad (with
radius �8 mm). Compared with our previous design of a planar
sensor structure,[26] such a curved “magnetic skin” could deform
more easily to comply with a variety of surface textures (e.g., knit-
ted fabrics and embossed dots patterns of Braille characters)
under a small contact force due to the reduced contact area, mak-
ing the sensor sensitive to the difference among similar textures.
At the same time, the curved sensor shape also results in a lower
friction force between the sensor and the contact surface during
sliding, which could reduce the tactile sensor’s wear and test cost
and thereby extend its lifespan.

2.2. Braille Character Recognition

Braille is an efficient and significant tool for people who are visu-
ally impaired to communicate with the world. Braille characters
are small rectangular blocks including six dots (either raised or
flat) in two columns, and there are in total 63 different patterns
(except the “all flat” case). Usually, it will take years of profes-
sional training to the level of fluently reading a book in
Braille texts.[30] To assist Braille learning, two types of method-
ologies are available to assist visually impaired people, which use
visual sensors or tactile sensors to perceive and recognize Braille
dot modes.[11,31] Compared with the visual sensor, the tactile sen-
sor is more compact in size, more robust to disturbance (e.g., the
change in environmental illumination), regarded as an alterna-
tive, and potentially more attractive solution to Braille character
recognition. However, when performing the recognition task,
existing tactile sensors must discontinuously press each individ-
ual character one by one. And for each character, they use one
taxel to check whether a dot is raised or flat, and in total they need

Table 1. Comparison of surface texture recognition methods with different tactile sensors and recognition algorithms (SVM, support vector machine;
MLP, multilayer perceptron; RDF, random decision forest; ELM, extreme learning machine; LSTM, long short-term memory; PSD, power spectral density;
FFT, fast Fourier transformation; AUC, area under the curve).

Tactile sensor type Sensor output Action Surfaces Recognition algorithm Manual feature selection Recognition accuracy [%]

Piezoelectric film[10] 1D Sliding Braille characters SVM/MLP Not required 91.45

Piezoresistive sensor array[11] Pressing RDF 99

Strain gauges[19] 1D Sliding 10 types of paper MLP PSD �60

Magnetostrictive tactile sensor[23] 5 types of fabrics ELM PSD 93

Piezoelectric film[9] 5 types of fabrics MLP FFT 98.7

Piezoresistive film[12] 12 types of fabrics SVM AUC 99

Magnetic skin (this work) 3D Sliding Braille characters LSTM Not required 97

60 types of fabrics 99
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six taxels for a character with six dots. In this way, these solutions
have a high device complexity but low reading efficiency. By
designing a soft magnetic film that has continuous and smooth
magnetic field distribution in 3D space, our tactile sensor is capa-
ble of a continuous way of recognizing Braille characters via nat-
ural sliding, which can significantly improve the recognition
efficiency.

The experimental setup for Braille recognition is shown in
Figure 2, where the tactile sensor is installed at the endpoint
of a robot hand. When the sensor slides over the Braille charac-
ters with different embossed patterns, the flexible magnet tip
deforms accordingly, and the measured magnetic flux densities
(Bx, By, and Bz) along the x, y, and z directions also change in a
particular manner. Unlike the “reading by pressing” method that
only takes into account the normal force, the 3D tactile signal
sequence (Bx, By, and Bz) involves both normal and shear contact
information, which is fed into a neural network to estimate the
characters touched in a real-time manner as how humans do. In
particular, the magnitude variations of Bx and By are correlated
with the position of the raised dots of each Braille character in the
column and row directions, respectively, while Bz reflects the
overall pattern of the raised dots.

As shown in Figure 1B, we designed a bidirectional LSTM
model with the attention mechanism for Braille character recog-
nition. The inputs of the LSTM network are sequential tactile sig-
nals in terms of magnetic flux densities when sliding over the
Braille text, and the outputs of the network are the probabilities
(or scores) that the block under the sensor represents each of the
29 characters in the Braille alphabet, including 26 English letters

and three special symbols. The character with the highest score
will be chosen as the final estimation result based on a majority
voting. An attention layer is also introduced to help the LSTM
network learn how to focus on a particular part of the tactile sig-
nals that can well distinguish characters with similar readings
(such as the letters “l” and “s” as shown in Figure 1C). After train-
ing on around 900 instances of Braille characters, the proposed
model achieves a real-time recognition accuracy of 97% tested on
the Braille poem Dreams with the sensor mounted on the robot
(Figure 2 and Movie S1, Supporting Information), which is com-
parable with that of proficient human readers. The correspond-
ing confusion matrix is shown in Figure S2, Supporting
Information, where only five Braille characters were mislabeled
among 163 instances of the test set.

To further test its potential in helping blind people in the
future, we also wear the tactile sensor (with “legs” for support)
on the fingertip of a sighted person for Braille character recog-
nition and trained another LSTM model on 680 instances of
Braille characters with different finger poses and reading speed.
The real-time recognition accuracy on the fingertip is 78% (when
the correct answer is the highest scored label of the Softmax
layer) and 90% (when the correct answer is within the top three
highest scored labels of the Softmax layer), with an average read-
ing speed of 15 mm s�1 (see Movie S2, Supporting Information).
The recognition accuracy on the fingertip is lower than that on
the robot because the sensor reading is sensitive to the variations
of finger poses and reading speed, while the current training set
is not large enough to cover all such variations. Moreover, the
alignment variation may result in similar sensor outputs for

Figure 1. Braille character recognition with the tactile sensor. A) Schematic illustration of the Braille character recognition using the tactile sensor with an
arc-shaped surface. B) The architecture of the bidirectional LSTM neural network with attention mechanism, which is used for predicting Braille characters
slid over by the tactile sensor. C) Sensor responses (in terms of the change of magnetic flux densities Bx, By, and Bz) when sliding the tactile sensor over
the Braille characters “l”, “s”, “r”, “o,” and “e” by the robot, where letters “l” and “s” have similar data patterns because of their similar dots modes, and
letter “r” has a much different (wider) pattern compared with the former two due to the increased number of dots in the second row. Letters “o” and “e”
also have similar tactile signals, and the former might be mistaken for the latter if the single dot in the third row of character “o” is omitted by the sensor
due to misalignment.
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different characters, which increases the difficulty in recognition.
For example, the letter “o” would be wrongly recognized as letter
“e” if the sensor leaves out the third row of the Braille character
“o” due to too much upward shift during reading (see Figure 1C
and Movie S2, Supporting Information). Nonetheless, it is pos-
sible to further improve the accuracy of Braille character recog-
nition on the fingertip. For example, we could increase the size of
the training set by including Braille characters perceived with dif-
ferent finger poses and moving speed to completely reflect the
reading habits of different users. We could also use the semantic
association strategy in the prediction process (e.g., by taking into
account natural language priors), by which characters with simi-
lar sensor outputs can be correctly recognized according to the
context.

2.3. Fabric Recognition

In addition to the capability of recognizing Braille characters, the
proposed method can also discriminate 60 types of fabrics of dif-
ferent softness, roughness, and friction (see Figure S1,
Supporting Information). The experimental setup for fabric rec-
ognition is shown in Figure 3A, where the tactile sensor is
mounted on the tip of a robotic arm, below which is a fabric sam-
ple (corduroy) glued on a fixed board. A stereo view and a sec-
tional view (schematic illustration) of the tactile sensor are shown
on the left and right side of Figure 3B, respectively.

As shown in Figure 3C, the sensor outputs change continu-
ously as the sensor slides over the corduroy sample. In the begin-
ning (t0), the sensor does not touch anything and thereby outputs

the initial magnetic flux densities at no load. Then, the magnetic
flux density along the z axis (Bz) increases from 1760 to 4100 uT
and keeps constant afterward as the sensor is pressed on the fab-
ric (t0–t1) and held still (t1–t2) subsequently. When the sensor
starts to slide at t2, the magnetic flux density along the x axis
(Bx) decreases rapidly from �90 to �3300 uT (t2–t3) and then
rises to �1000 uT (t3–t4) because the contact condition between
the sensor surface and the fabric sample changed from the static
friction stage (t2–t3) to the initial slipping stage (t3–t4). Similar
responses are also observed for Bz. Then, the sliding friction
(i.e., complete slipping) occurs at t4, and the Bz and Bx readings
fluctuate periodically as the sensor slides over the parallel ridges
(i.e., raised lines) of the corduroy sample.

To further investigate the relationship between the change in
magnetic flux densities and the surface properties of fabric sam-
ples, we compare the sensor responses of three other fabrics, as
shown in Figure 4. It is found that the outputs of the tactile sen-
sor (in terms of 3-axis magnetic flux densities) are directly related
to the fabric’s surface properties. In particular, the increasing
magnitude (h1) of the magnetic flux density along the z axis
(Bz) during pressing is proportional to the hardness of the fabric,
while the decreasing magnitude (h2) of the magnetic flux density
along the x axis (Bx) during initial sliding is proportional to the
friction of the surface. This is intuitive to understand because the
stiffer the material is, the larger the deformation of the magnetic
film along the z axis (and therewith Bz) would be when the sensor
is pressed on the material surface with a fixed depth (1 mm here).
Similarly, the more frictional the surface is, the larger the lateral
deformation of the magnetic film along the x axis (and therewith

Figure 2. Real-time Braille recognition. Top: Sensor response and character-by-character recognition process when the sensor slides over the fourth row
of the Braille poem Dreams. Bottom: Experimental setup for the real-time estimation of the Braille poem Dreams (the sensor is currently sliding near the
middle of the fourth row), where the black-colored letters in the poem (lower right corner of the figure) are correctly estimated, the orange-colored letters
(like “h”) are wrongly labeled, and the gray-colored letters are those to be read subsequently.
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Bx) would be when sliding the sensor on the materials. Moreover,
we observe that the oscillation magnitude (h3) of Bz is propor-
tional to the roughness of the surface; this is because the rougher
the surface is, the larger the vibration of the magnetic film alone
the z axis (and therewith Bz) would be when sliding the sensor on
the material surface. In summary, the larger the hardness, fric-
tion, or roughness of the material is, the larger the h1, h2 or h3 of
the sensor responses would be, respectively. This is consistent

with the actual surface conditions of the three fabric samples,
i.e., fabric #13 has a surface of moderate hardness but with
the lowest roughness and friction; fabric #15 has the lowest hard-
ness but with the highest roughness and friction, and fabric #43
has the highest hardness and a moderate roughness and friction.

Taking advantage of the rich information conveyed in the tac-
tile data in terms of surface hardness, friction, and roughness,
the proposed LSTM model successfully discriminates 60 types

Figure 3. Fabric recognition with the tactile sensor. A) The experimental setup for fabric recognition, where the blue arrow indicates the sliding direction
of the sensor. B) Stereo view and the schematic illustration of the tactile sensor. C) Sensor response (in terms of the change of magnetic flux densities Bx,
By, and Bz) when sliding the tactile sensor over the fabric sample (corduroy) by the robot.

Figure 4. Sensor responses when sliding over three fabric samples with different hardness, friction, and roughness, where h1, h2, and h3 indicate the
increasing (or decreasing) magnitude of magnetic flux densities when pressing and sliding the sensor.
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