Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury

ABSTRACT: We present a new chemical mechanism for Hg⁰/Hg¹/Hg¹¹ atmospheric cycling, including recent laboratory and computational data, and implement it in the GEOS-Chem global atmospheric chemistry model for comparison to observations. Our mechanism includes the oxidation of Hg⁰ by Br and OH, subsequent oxidation of Hg¹ by ozone and radicals, speciation of Hg¹¹ in aerosols and cloud droplets, and speciated Hg¹¹ photolysis in the gas and aqueous phases. The tropospheric Hg lifetime against deposition in the model is 5.5 months, consistent with observational constraints. The model reproduces the observed global surface Hg² concentrations and Hg¹¹ wet deposition fluxes. Br and OH make comparable contributions to global net oxidation of Hg⁰ to Hg¹. Ozone is the principal Hg¹ oxidant, enabling the efficient oxidation of Hg¹ to Hg¹¹ by OH. BrHgI₂OH and Hg²¹(OH)₂, the initial Hg¹¹ products of Hg⁰ oxidation, speciate in aerosols and clouds to organic and inorganic complexes, and volatilize to photostable forms. Reduction of Hg¹¹ to Hg⁰ takes place largely through photolysis of aqueous Hg¹¹–organic complexes. 71% of model Hg¹¹ deposition is to the oceans. Major uncertainties for atmospheric Hg chemistry modeling include Br concentrations, stability and reactions of Hg¹, and speciation and photoreduction of Hg¹¹ in aerosols and clouds.

KEYWORDS: mercury modeling, chemical mechanism, mercury oxidation, mercury photoreduction, atmospheric lifetime, mercury deposition
Table 1a. Chemical Mechanism: Bimolecular and Three-Body Reactions

<table>
<thead>
<tr>
<th>reaction</th>
<th>rate coefficientsa</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Hg}_0^+ + \text{Br} + \text{M} \rightarrow \text{BrHg}_0^+ + \text{M})</td>
<td>(k_6 = 1.46 \times 10^{-10} \text{ (T/298)}^{-1.86})</td>
<td>45</td>
</tr>
<tr>
<td>(\text{BrHg}_0^+ + \text{M} \rightarrow \text{Hg}_0^+ + \text{Br} + \text{M})</td>
<td>(k_0/K_{\text{eq}} = 9.14 \times 10^{-24} \exp(7801/\text{T}))</td>
<td>19</td>
</tr>
<tr>
<td>(\text{Hg}_0^+ + \text{OH} + \text{M} \rightarrow \text{HOHg}_0^+ + \text{M})</td>
<td>(k_4 = 3.34 \times 10^{-30} \exp(43/\text{T}))</td>
<td>55b</td>
</tr>
<tr>
<td>(\text{HOHg}_0^+ + \text{M} \rightarrow \text{Hg}_0^+ + \text{OH} + \text{M})</td>
<td>(k_0/K_{\text{eq}} = 2.74 \times 10^{-35} \exp(5770/\text{T}))</td>
<td>6</td>
</tr>
<tr>
<td>(\text{Hg}_0^+ + \text{Cl} + \text{M} \rightarrow \text{ClHg}_0^+ + \text{M})</td>
<td>(k_0 = 2.25 \times 10^{-30} \exp(680/\text{T}))</td>
<td>32</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{O}_2 \rightarrow \text{YHg}_0^+ \text{O}_2 + \text{Y}) ((\equiv \text{Br, OH, Cl}))</td>
<td>(3.0 \times 10^{-11})</td>
<td>5f-d</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{Cl} \rightarrow \text{YHg}_0^+ \text{Cl} + \text{Y}) ((\equiv \text{Br, OH, Cl}))</td>
<td>(4.1 \times 10^{-11} \exp(-856/\text{T}))</td>
<td>2d</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{Cl} + \text{O} \rightarrow \text{YHg}_0^+ \text{CO} + \text{Y}) ((\equiv \text{Br, OH, Cl}))</td>
<td>(6.0 \times 10^{-11} \exp(-550/\text{T}))</td>
<td>4f-d</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{NO}_2 + \text{M} \rightarrow \text{YHg}_0^+ \text{ONO} + \text{M}) ((\equiv \text{Br, OH, Cl}))</td>
<td>(k_4 = 4.3 \times 10^{-36} \text{ (T/298)}^{-5.9})</td>
<td>53, 46c, 4f</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{Z} + \text{M} \rightarrow \text{YHg}_0^+ \text{Z} + \text{M}) ((\equiv \text{Br, OH, Cl, Z \equiv HO}_2, \text{BrO, ClO}))</td>
<td>(k_0 = 6.9 \times 10^{-11} \text{ (T/298)}^{-2.4})</td>
<td>53, 46c, 4f</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{Z} + \text{M} \rightarrow \text{YHg}_0^+ \text{Z} + \text{M}) ((\equiv \text{Br, OH, Cl, Z \equiv HO}_2, \text{BrO, ClO}))</td>
<td>(3.0 \times 10^{-11})</td>
<td>53f-d</td>
</tr>
<tr>
<td>(\text{YHg}_0^+ + \text{NO}_2 + \text{M} \rightarrow \text{YHg}_0^+ \text{NO} + \text{Y}) ((\equiv \text{Br, Cl}))</td>
<td>(3.9 \times 10^{-11})</td>
<td>43</td>
</tr>
<tr>
<td>(\text{BrHg}_0^+ + \text{Br} \rightarrow \text{BrHg}_0^+ \text{Br})</td>
<td>(k_0 = 1.2 \times 10^{-15} \text{ (T/298)}^{-1.9})</td>
<td>53, 46c, 4f</td>
</tr>
<tr>
<td>(\text{ClHg}_0^+ + \text{Cl} \rightarrow \text{ClHg}_0^+ \text{Cl})</td>
<td>(1.2 \times 10^{-11} \exp(-5942/\text{T}))</td>
<td>111</td>
</tr>
</tbody>
</table>

“The rate coefficients have units of cm³ molec⁻¹ s⁻¹ for bimolecular reactions and cm⁴ molec⁻² s⁻¹ for k₀ of three-body reactions. The second-order rate coefficient for three-body reactions is calculated as k([M]) = (k₄[M])^0.6, where [M] is the number density of air molecules and p = (1+(logₐ(ₐk₄[M]/k₅p)))⁻¹. Only k₀ is given when the low-pressure limit dominates in the atmosphere and the second-order rate coefficient is then calculated as k₄[M]. For thermal dissociation reactions, the rate coefficient is calculated as k = k₄/Kₑ where k₄ is the rate coefficient of the forward (association) reaction given in the preceding entry and Kₑ is the equilibrium constant in units of cm³ molec⁻¹. T is absolute temperature in K. The rate coefficient was calculated by Dibble et al.⁶ from the experimental results of Pal and Ariya.²⁵ “Saiz-Lopez et al.¹³ estimated an upper limit for the rate coefficient of 1.0×10⁻¹⁰ cm³ molec⁻¹ s⁻¹, assuming no steric effects. We assume that the BrHg⁺Z rate coefficients hold for HOHg⁺Z and ClHg⁺Z because of the similar bond energies and reactions pathways for the three species,¹⁹ and that the BrHg⁺O⁺Z rate coefficients hold for HOHg⁺O⁺Z and ClHg⁺O⁺Z. “Khir et al.¹³ calculated the rate for the reaction coefficient of the BrHg⁺O⁺CO → BrHg⁺CO₂ reaction at two temperatures: (9.4–52)×10⁻¹² cm³ molec⁻¹ s⁻¹ at 298 K and (3.8–29)×10⁻¹² cm³ molec⁻¹ s⁻¹ at 220 K. We use the mean values at each temperature to determine the temperature-dependent rate coefficient. We assume that the experimentally determined value of k₀ for the BrHg⁺NO₂ reaction¹³ holds for this set of reactions too. These reactions take place at the high-pressure limit in the atmosphere and the rate coefficient is given for the effective bimolecular reactions.

Atmospheric Hg⁰ oxidation pathways including in aerosols and clouds are thought to be negligible because of either slow rates or low oxidant concentrations. Partitioning of gas-phase Hg⁰ species into aerosols and cloud droplets adds further complexity to the problem. Atmospheric observations indicate that this partitioning is governed by thermodynamic equilibrium.¹⁵ Once in the condensed phase, Hg⁰ may resemble as different inorganic and organic complexes that then partition back to the gas phase.¹⁶ HgCl₂ produced in this manner is stable against photolysis, and could thus dominate the Hg²⁺ pool. Hg²⁺-organic complexes photoreduce to Hg⁰ though not as quickly as some of the inorganic complexes.¹,²⁷

Although uncertainties in the Hg⁰/Hg²⁺/Hg⁴⁺ atmospheric redox cycling remain large, we show here that the most recent laboratory and computational data can be accommodated in a chemical mechanism that reproduces the main features of atmospheric observations and thus provides a basis for Hg modeling. We implement this mechanism in the GEOS-Chem global model, which has been used extensively for the study of atmospheric Hg and its cycling with ocean and land reservoirs.”¹⁻³,³³,³⁸⁻⁴² Our work represents a major revision to the previous GEOS-Chem mechanism described by Horowitz et al.”³³

MATERIALS AND METHODS

Chemical Mechanism. Table 1a–c lists the chemical mechanism and Figure 1 shows the main reaction pathways. Hg⁰ oxidation is initiated by the radicals Y ≡ Br, Cl, and OH, forming weakly bound intermediates, YHg⁴⁺, that further add another radical, Z, to form YHg⁴⁺Z:

\[
\text{Hg}^0 + \text{Y} + \text{M} \rightarrow \text{YHg}^4^+ + \text{M} \quad \text{(R1)}
\]

\[
\text{YHg}^4^+ + \text{Z} + \text{M} \rightarrow \text{YHg}^4^+\text{Z} + \text{M} \quad \text{(R2)}
\]

The reaction of Hg⁰ with Br is exothermic and barrierless,¹⁄₆,¹⁄₇,¹⁄₃ and its kinetics have been experimentally measured.¹⁄₄,¹⁄₅ BrHg⁴⁺ has a low bond energy and dissociates thermally within minutes,¹⁄₈,¹⁄₉ but its association reactions with Z ≡ OH, Br, NO₂, HO₂, BrO, ClO are also barrierless and fast.¹⁄₇,¹⁄₈,¹⁄₉,¹⁄₆,¹⁄₆ BrHg⁴⁺NO and BrHg⁴⁺OOH are thought to be the major products due to the abundance of NO₂ and HO₂.¹⁄₇,¹⁄₈,¹⁄₆ BrHg⁴⁺ does not abstract hydrogen atoms and is inefficient in adding to C≡C double bonds.¹⁄₈ It undergoes displacement reactions with certain radicals (Z₁ ≡ NO₂ and Br) to return Hg⁰:¹⁄₄,¹⁄₆

\[
\text{YHg}^4^+ + \text{Z}_1 \rightarrow \text{Hg}^0 + \text{YZ}_1
\]

This chemistry has been included previously in the GEOS-Chem mechanism”³³ and other models.”⁵⁰⁻⁵² Here we update the rate coefficient for reactions R2 and R3 based on recent laboratory measurement of the BrHg⁺ + NO₂ reaction.³³ The OH-initiated oxidation of Hg⁰ to Hg²⁺ also proceeds by the R1=R2 two-step mechanism, and HOHg⁴⁺ is analogous to BrHg⁴⁺ in forming thermally stable HOHg⁴⁺Z (Z ≡ NO₂, HO₂, etc.) species.⁵¹,⁵²,⁵³ The Hg⁰ + OH + M → HOHg⁴⁺ + M reaction is exothermic and fast,¹⁄₄⁻⁵⁶ but theoretical calculations by Goodsite et al.”¹⁷ found HOHg⁴⁺ to be so weakly bound that it would thermally decompose rather than form
HgII. As a result, this pathway was discounted in past GEOS-Chem mechanisms. However, Dibble et al. found a much higher bond energy for HOHg and so we reconsider this pathway here.

Oxidation of Hg0 by Cl atoms is fast and ClHgI is thermally stable, but tropospheric Cl concentrations are low. We include it using GEOS-Chem Cl concentrations from Wang et al. but find that it accounts for less than 1% of global tropospheric HgII conversion to HgI. Horowitz et al. included the aqueous-phase oxidation of Hg0 by HOCl, OH, and ozone in cloud droplets but found them to be negligible due to the low solubility of Hg0 and we do not include them in our mechanism.

Standard chemical mechanisms for atmospheric Hg0, including Horowitz et al., do not include gas-phase photoreduction of HgI. However, theoretical calculations indicate that BrHgI (Z ≡ NO2, HO2, OH, BrO, ClO) species rapidly photolyze. The major HgII species, BrHgONO and BrHgOOH, photolyze on a time scale of minutes. YHgII (Y ≡ Br, Cl, OH) species also photodissociate rapidly to Hg0.59

Saiz-Lopez et al. found that including HgI and HgII photolysis in their global model greatly lowered the net conversion rate of Hg0 to HgII and led to a large overestimate of atmospheric HgII concentrations. Their results implied a missing Hg oxidation pathway in current mechanisms, and they suggested the oxidation of BrHgO by ozone:

\[
\text{BrHg}^+ + O_3 \rightarrow \text{BrHg}^{1+}O + O_2 \quad \text{(R4)}
\]

Reaction R4 is strongly exothermic. Theoretical calculations by Saiz-Lopez et al. suggest that it is likely barrierless and produces the BrHgO radical. Using methods similar to theirs (density functional theory), as well as more advanced CASPT2 calculations, we also find no barrier (Supporting Information (SI) Figure S1). Preliminary experimental data indicate a high rate constant consistent with the absence of barrier (SI Figure S2). We find that the analogous reaction of HOHg0 with ozone also lacks a barrier and has similar exothermicity to reaction R4 (SI Figure S3), reflecting the similarity between BrHgO and HOHg0. Saiz-Lopez et al. estimated an upper limit of \(1 \times 10^{-18} \text{ cm^3 mole}^{-1} \text{s}^{-1}\) for the rate coefficient of reaction R4, assuming no steric effects. Here we estimate a rate coefficient of \(3 \times 10^{-11} \text{ cm^3 mole}^{-1} \text{s}^{-1}\) for the reaction of YHgII with ozone (Y ≡ Br, Cl, OH).

The BrHgO radical is also formed from the photolysis of certain BrHgX species (Table 1b). Its reactivity mimics that of OH, and it forms stable HgII species by abstracting H atoms from methane and other volatile organic compounds, or by associating with NO and NO2, with the methane reaction dominating. Khiri et al. found that BrHgRO can also be reduced to BrHgO by CO, BrHgOOH photolysis in the troposphere is relatively slow. Thus, we include the following reactions in our mechanism:

\[
\begin{align*}
\text{YHg}^+ + O_3 & \rightarrow \text{YHg}^{1+}O + O_2 \quad \text{(R5)} \\
\text{YHg}^{1+}O + \text{CH}_4 & \rightarrow \text{YHg}^{1+}OH + \text{CH}_3 \quad \text{(R6)} \\
\text{YHg}^{1+}O + \text{CO} & \rightarrow \text{YHg}^+ + \text{CO}_2 \quad \text{(R7)}
\end{align*}
\]

HgII species are absorbed by aerosol particles and cloud droplets and dissociate to HgII ions, which repartition to form inorganic and organic complexes. We refer to total particulate mercury as HgP, HgCl0, HgCl+1, and HgCl2.
Table 1c. Chemical Mechanism: Multiphase Processes

<table>
<thead>
<tr>
<th>reaction</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Hg}^{II}(\text{g})_{\text{arom,clouds}} \rightarrow \text{Hg}^{II}(\text{p})$</td>
<td>a</td>
</tr>
<tr>
<td>$\text{Hg}^{II}(\text{p})_{\text{arom}} \rightarrow \text{Hg}^{II}(\text{X})$</td>
<td>b</td>
</tr>
<tr>
<td>$\text{Hg}^{II} \equiv { \text{Hg}^{II}(\text{p})(\text{org}) + \text{Hg}^{II}(\text{p})(\text{inorg}) }$ (troposphere)</td>
<td>(stratosphere)</td>
</tr>
</tbody>
</table>

“$\text{Hg}^{II}(\text{g})$ and $\text{Hg}^{II}(\text{p})$ represent all gas- and particle-phase Hg^{II} species; $\text{Hg}^{II}(\text{X})$ represents the unspeciated Hg^{II} gas volatilizing from $\text{Hg}^{II}(\text{p})$ and treated as $\text{Hg}^{II}(\text{Cl})_2$. $\text{Hg}^{II}(\text{g})$ uptake rate is given by eq 1. For clouds, the uptake rate accounts for entrainment limitation in partly cloudy grid cells.”

Volatilization is considered only for tropospheric aerosols, not for cloud droplets (because of their large volume) and stratospheric aerosols (because of their high acidity and cold temperature). The volatilization rate is given by eq 2 with equilibrium constant between $\text{Hg}^{II}(\text{p})$ and $\text{Hg}^{III}(\text{p})$ from Amos et al.35 $\text{Hg}^{III}(\text{p})$ in the tropospheric aerosol speciates as $\text{Hg}^{III}(\text{p})(\text{org})$ and $\text{Hg}^{III}(\text{p})(\text{inorg})$ representing Hg^{III}–organic and Hg^{III}–inorganic complexes. Their concentrations are calculated as $[\text{Hg}^{III}(\text{p})(\text{org})] = f_{\text{OA}}[\text{Hg}^{II}(\text{p})]$ and $[\text{Hg}^{III}(\text{p})(\text{inorg})] = (1-f_{\text{OA}})[\text{Hg}^{II}(\text{p})]$, where f_{OA} is the local mass fraction of organic aerosols in fine particles computed as $f_{\text{OA}} = m_{\text{OA}}/m_{\text{OA}} + m_{\text{org}}$, with m_{OA} and m_{org} representing the respective mass concentrations of organic and inorganic aerosol components.

Hg^{III}–organic complexes in aquatic systems.70–72 Aqueous Hg^{III} photoreduction frequencies of 0.02–0.2 h$^{-1}$ have been measured in summertime rainwater samples,73 consistent with photoreduction frequencies of Hg^{III}–fulvic acid complexes,37 but lower than 0.2–3 h$^{-1}$ observed in fresh and marine waters.73 In our mechanism, we assume that the photoreduction frequency of $\text{Hg}^{III}(\text{p})(\text{org})$ scales as the local NO$_2$ concentration (J$_{\text{NO2}}$) and adjust the scaling factor (β in Table 1b) to fit observed atmospheric Hg^{II} concentrations. We obtain a scaling factor $\beta = 4 \times 10^{-5}$, corresponding to a tropospheric mean $\text{Hg}^{III}(\text{p})(\text{org})$ photoreduction frequency of 0.13 h$^{-1}$ in clear sky at noon in summer at 45$^\circ$N.

GEOS-Chem Model. We implement the chemical mechanism of Table 1 in the global 3-D GEOS-Chem model (www.geos-chem.org; version 12.9.0). The current standard version of the model for Hg is described by Horowitz et al.33 and includes dynamic coupling between the atmosphere and surface reservoirs. Here we focus on the atmospheric reservoir and therefore use gridded land and ocean surface Hg concentrations from Horowitz et al.33 as boundary conditions. Other Hg emissions (Figure 1) are also from Horowitz et al.33 except that anthropogenic Hg emissions are from Streets et al.74 Total Hg emission in the model is 8.7 Gg a$^{-1}$, of which 0.8 Gg a$^{-1}$ is as Hg^{II} (from combustion) and emitted as $\text{Hg}^{II}(\text{X})$ (Figure 1).

We drive our simulation with assimilated meteorological fields from the NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) system.75 We conduct a three-year global simulation (2013–2015) at 4° latitude by 5° longitude resolution following a spin-up period of 15 years to equilibrate the stratosphere. The chemical mechanism is implemented using the Kinetic PreProcessor (KPP)76 customized for GEOS-Chem, and the chemical evolution is computed every hour on the model grid.

GEOS-Chem in its "full-chemistry" implementation includes detailed oxidant-aerosol chemistry in the troposphere and stratosphere.4,77–79 For computational efficiency, the Hg simulation in GEOS-Chem uses monthly oxidant and aerosol concentrations archived from that full-chemistry simulation. Horowitz et al.33 used Br concentration fields from Schmidt et al.80 but these are now thought to be too high81 and do not include the known source of bromine radicals from debromination of sea salt aerosols (SSA).82 Here we use updated oxidant and aerosol fields from GEOS-Chem version 12.9, with major update of bromine chemistry to include mechanistic SSA debromination and less efficient heterogeneous recycling of bromine radicals.83 The tropospheric mean Br and BrO concentrations are 0.03 and 0.19 pptv, respectively, compared to 0.08 and 0.48 pptv in Schmidt et al.,80 but concentrations are higher in the marine boundary layer (MBL) because of SSA debromination (SI Figure S4).

Tropospheric bromine chemistry remains very uncertain,84 therefore we also conduct a sensitivity simulation using the Schmidt et al.80 Br and BrO fields. We apply a diurnal scaling to the monthly mean oxidant concentrations using the Y–Y0–O$_3$–NO (Y0 ≡ Br, Cl) photochemical equilibrium for the daytime concentrations of Br, BrO, Cl, ClO following Holmes et al.85 a cosine function of the solar zenith angle for daytime OH and HO$_2$ and NO–NO$_2$–O$_3$ photochemical equilibrium for NO$_2$. Br and BrO concentrations in the polar springtime boundary layer are calculated following Fisher et al.85

We treat the transfer of Hg^{II} between the gas phase and the aerosol/cloud phase as a kinetic process. Individual gas-phase species Hg^{II} are taken up by aerosols and cloud droplets where they are respéciated to the $\text{Hg}^{II}(\text{p})(\text{org})$ and $\text{Hg}^{II}(\text{p})(\text{inorg})$ forms, and then volatilized (for aerosols) as the $\text{Hg}^{II}(\text{X})$ form. The rate of uptake and volatilization of Hg^{II} gaseous species is calculated as84,85

$$\frac{d[Hg^{II}(g)]}{dt} = k_m[Hg^{II}(g)]$$

$$\frac{d[Hg^{II}(X)_{(g)}]}{dt} = k_m[Hg^{II}(g)]_{eq}$$

where $[Hg^{II}(g)]$ is the number density of $Hg^{II}(g)$, k_m is the mass transfer rate coefficient (s^{-1}), and $[Hg^{II}(g)]_{eq}$ is calculated on the basis of equilibrium between total Hg^{II} in the gas and aerosol phases using the empirical equilibrium constant of Amos et al.35 as a function of local temperature and mass concentration of fine particulate matter. For cloud droplets, we assume no mass transfer back to the gas phase because of the high solubility of Hg^{II}. Uptake on coarse-mode SSA follows Holmes et al.57 k_m for aerosols is calculated as

$$k_m = \sum_j S_j \left(\frac{r_j}{D_j} + \frac{\nu}{\alpha} \right)^{-1}$$

where r_j and S_j are the effective mean area-weighted radius and surface area per unit volume of air of each aerosol component (j), D_j is the gas-phase molecular diffusion coefficient of Hg^{II} gas, ν is the mean molecular speed of Hg^{II} gas, and α is the mass accommodation coefficient. We take $\alpha = 0.1$ for all Hg^{II} gas species in the model since α for other highly soluble species generally has values of 0.1–0.3.86 k_m for cloud droplets is calculated similarly but also accounts for entrainment limitation in partly cloudy grid cells.77

RESULTS AND DISCUSSION

Global Atmospheric Hg Budget. Figure 1 shows the global model Hg budget for the troposphere and the major
pathways for $\text{Hg}^0/\text{Hg}^+/\text{Hg}^{II}$ redox cycling. The tropospheric mass of Hg is 4 Gg (3.9 Gg as Hg^0 and 0.1 Gg as Hg^{II}). The stratosphere contains an additional 0.8 Gg (not shown in Figure 1). The tropospheric lifetime of total Hg ($\text{Hg}^0+\text{Hg}^++\text{Hg}^{II}$) against deposition is 5.5 months. The simulated Hg mass and lifetime are within observationally constrained values of ~4 Gg for the tropospheric Hg mass and 4–7 months for the Hg lifetime.6,23,33,57 The previous GEOS-Chem simulation of Horowitz et al.33 had a tropospheric mass of Hg of 3.9 Gg and a lifetime against deposition of 5.2 months, similar to ours, but four times as much Hg^{II} (0.4 Gg) because of production at higher altitudes (leading to longer lifetime against deposition) and slower photoreduction.

We find that oxidation of Hg^0 to Hg^+ takes place by Br and OH at similar rates. Ozone is the primary oxidant of Hg^+ to Hg^{II} as it is far more abundant than NO$_3$ and NO$_2$, which were the main Hg^+ oxidants in previous mechanisms.1,6,33 Photolysis and thermal decomposition of BrHg^+ are much slower than its reaction with ozone, so the main fate of BrHg^+ is oxidation to BrHg^{II}OH, via BrHg^+O. Although HOHHg^+ is less stable than BrHg^+ and a smaller fraction of it is converted to Hg^{II}, the OH-initiated pathway still accounts for one-third of the global Hg^{II} production. In comparison, Dibble et al.6 had found the OH-initiated pathway to be important only in the urban boundary layer. Including the HOHHg^+O reaction in our mechanism allows the OH-initiated pathway to contribute to Hg^{II} production globally. The chemical lifetime of Hg^+ against oxidation to Hg^+ in our model is 4.5 months, compared to 2.7 months in Horowitz et al.33 and about 13 months in Saiz-Lopez et al.1 Using higher free tropospheric Br concentrations from Schmidt et al.80 lowers the tropospheric Hg mass by about 10% due to increased partitioning to Hg^{II} and hence faster deposition. Br then contributes 75% of Hg^0 oxidation (SI Figure S5).

Figure 2 shows the zonal distribution of the Hg^0 oxidation rate in our standard simulation. Gross oxidation of Hg^0 to Hg^{II} is fastest in the MBL and in the upper troposphere and largely reflects the Br distribution. Br concentrations are highest near the tropical tropopause due to fast photolysis of BrO and low ozone and temperature.88,89 The OH-initiated oxidation pathway contributes most to Hg^0 oxidation in the tropical free troposphere, as dissociation of HOHHg^+ is fast at lower altitudes.6 It also dominates in the continental boundary layer, consistent with Gabay et al.,90 shows the zonal distribution of BrHg^0OH and Hg^{II}H(OH)$_2$. They had maximum production in the tropical upper troposphere, comprising 49% of Hg^0 mass, while Hg^{II} comprises 22%. The remaining Hg^{II} mass is mostly composed of Hg^{II}H(OH)$_2$ which is more abundant than BrHg^0OH because it does not photolyze. Most of the reduction of Hg^{II} to Hg^0 is through the aqueous-phase photolysis of HgIIP(ORG). The photoreduction rate increases with altitude because of stronger UV radiation and the higher Hg^{II} particle fraction at lower temperatures, and it is faster in the northern hemisphere because of the higher fraction of organic aerosol. HgIIP is stable against photoreduction in the stratosphere as it is assumed to be present as free HgII.

The net rate of oxidation of Hg^0 to Hg^{II}, accounting for Hg^{II} reduction, is 43% of the gross Hg^0 oxidation rate. Net Hg^0 oxidation is fastest in the MBL where Hg^{II} photoreduction is slower than deposition. Horowitz et al.33 found little net oxidation in the lower troposphere because their simulation had little Br in the MBL and did not include the Hg^0 + O$_3$ reaction. They had maximum production in the tropical upper troposphere, but here this is largely canceled by photoreduction and we find areas of net reduction as the Hg^{II}-rich tropical upper tropospheric air is transported poleward by the Hadley circulation. Globally, we find that about half of the net oxidation of Hg^0 to Hg^{II} takes place through the OH-initiated

Figure 1. Global tropospheric Hg budget and main Hg redox pathways in our simulation for 2013–2015. The Hg masses and rates are global annual means given in units of Gg and Gg a$^{-1}$ respectively. The tropospheric mass of Hg^0 is very small (3 × 10$^{-6}$ Gg) and not shown. The main Hg^+ species in the model and their percent contributions to the total tropospheric Hg^+ mass are listed. HgIIP denotes particulate Hg^+, which includes Hg^{II}-organic complexes (HgIIP(org)), and Hg^{II}-inorganic complexes (HgIIP(inorg)). HgIIX denotes the gas-phase Hg^{II} species that volatilize from HgIIP and is modeled as HgIICl$_2$. Oxidation of Hg0 by Cl atoms is not shown because it accounts only for <1% of the Hg0 chemical sink in the troposphere.

Figure 2. Annual (2013–2015) zonal mean gross and net Hg^0 oxidation rates in GEOS-Chem. The contour lines show the percent contribution of the OH-initiated Hg0 oxidation pathway. The dashed line denotes the annual-mean tropopause.
pathway, compared to one-third for gross oxidation, because of the stability of HgII(OH)\textsubscript{2} against photolysis.

Our results differ substantially from the global model simulation of Saiz-Lopez et al.5 They found that including the photolysis of HgI and HgII species increased the Hg lifetime against deposition to 20 months and the tropospheric Hg mass to 7.9 Gg, twice higher than inferred from atmospheric observations. Including the BrHgIIO by CO\textsubscript{2} and the slower BrHgIINO\textsubscript{2} rate even longer had they included the recent still too high. The Hg lifetime in their model would have been even longer had they included the recent findings on the reduction of BrHgIIO by CO\textsubscript{2},4 and the slower BrHgIINO\textsubscript{2} rate coefficient.53 The main reasons why we achieve a shorter Hg lifetime are because we include (1) the HHO\textsubscript{2}O+O\textsubscript{3} reaction, which accounts for half of the net chemical loss of HgI in our model; and (2) the respeciation of photolabile HgII species in aerosols and cloud droplets to form more stable species.

Spatial Distribution of Hg Concentrations and Deposition. Figure 3 shows the modeled zonal distributions of HgI and HgII concentrations and compares modeled and observed HgI concentrations at the surface. There is little variation in HgI concentrations with altitude in the troposphere, both in the model and in aircraft measurements.91−93 consistent with the long lifetime of HgI. Modeled HgI concentrations decrease by ~50 ppq within a height of 3 km above the tropopause, which is somewhat lower than the decrease (~70 ppq) observed from aircraft.93 This could reflect excessive mixing across the tropopause in the 4° × 5° version of the model.94 The model captures the observed spatial patterns in surface HgI concentrations (r = 0.86), which are driven by anthropogenic emissions and the interhemispheric gradient, but it underestimates the observed variability. The model overestimates the observed HgI concentrations in the southern hemisphere by about 20 ppq but this could reflect uncertainty in ocean HgI emissions.33

SI Figure S6 compares the simulated and observed HgI concentrations in surface air for different latitudinal bands. Polar concentrations show a spring minimum both in the observations and in the model due to high bromine in the polar MBL.12,95 Observations at northern midlatitudes show minimum concentrations in summer−fall, previously attributed to HgI production in the upper troposphere by OH and Br,21,5 but here the model minimum is shifted to spring because of the large Br source from SSA debromination.92 There is no significant seasonal variation in the tropics either in the model or in the observations. Observations at southern midlatitudes also show no significant seasonal variation but the model has a summer minimum driven by HgI oxidation. Interpretation of model errors in reproducing the observed HgI seasonal variations is complicated by uncertainties in the seasonality of ocean and land fluxes.42

Simulated HgII concentrations increase with altitude in the troposphere—from 1 ppq in surface air to 15 ppq at the tropopause—reflecting the sink from deposition. Concentrations are highest in the subtropics due to subsidence of HgII produced in the tropical upper troposphere.96,97 Values in surface air are consistent with long-term HgII observations made using KCl-coated denuders (SI Figure S7), but these measurements are known to be biased low.98,99 Aircraft measurements find an average of 10 ppq HgII in the free troposphere at northern midlatitudes,3 much higher than in the model (Figure 3). Using the higher Br concentrations from Schmidt et al.80 in the model does not fix the problem, but slower aqueous photoreduction would. We conducted a sensitivity simulation in which aqueous HgII photoreduction was limited to liquid cloud droplets and HgIIP(\textsubscript{org}) formation on aerosol particles was excluded, similar to Saiz-Lopez et al.,1,5 and found a doubling of HgII concentrations in the free troposphere. However, HgIIP(\textsubscript{org}) photoreduction frequency in cloud droplets required to fit the observed Hg lifetime against deposition in that sensitivity simulation was much higher and inconsistent with the rainwater observations of Saiz-Lopez et al.1

Figure 3. Annual mean (2013−2015) concentrations of HgI and HgII in GEOS-Chem. The top panels are zonal mean concentrations as a function of pressure and sine latitude. The dashed lines indicate the annual mean tropopause. The bottom panel compares the modeled surface HgI concentrations with observations (filled circles and triangles) from the compilations of Travnikov et al.51 (courtesy of Hélène Angot) and AMAP/UNEP.114 Filled triangles represent high altitude sites. We only include observations made between 2010 and 2015. The mean ± standard deviation of the observed concentrations is inset in the bottom panel along with the corresponding model values sampled at the site locations. The color scales are different for each panel.

Figure 4 shows the observed and modeled HgII wet deposition fluxes, as well as the modeled total (wet + dry) HgI deposition flux. The mean HgII wet deposition flux for the global ensemble of sites is 25% lower in the model than in the observations. The model shows maximum wet deposition flux
over eastern China because of high anthropogenic HgII emissions, but this is not seen in observations, suggesting that China’s HgII emissions may be overestimated due to insufficient accounting of recent emission controls.\cite{100} The model captures the regional maximum of HgII wet deposition over the southeast U.S. driven by deep convective scavenging of free tropospheric HgII-rich air,\cite{101,102,103} but underestimates its magnitude because of the previously discussed underestimate of HgII in the free troposphere. The global HgII deposition flux in our standard simulation is 2.6 Gg a−1 and the total (wet + dry) HgII deposition flux is 5.5 Gg a−1. Another 1.2 Gg a−1 is dry deposited to land as Hg0. We find that 71% of HgII deposition takes place over the oceans, where it is the main source of Hg for the marine biosphere,\cite{104,105} and is 15% higher in the northern than in the southern hemisphere. Horowitz et al.\cite{33} found a higher fraction (82%) of HgII deposition over the oceans because of faster HgII reduction over land driven by high organic aerosol. Holmes et al.\cite{37} found that 72% of the HgII deposition takes place over the oceans, but with a higher flux in the southern hemisphere than in the northern hemisphere, reflecting the Br distribution in their simulation. HgII deposition over land in our simulation is concentrated largely in HgII-rich emission hotspots over China, India, and South Africa. Outside of these hotspots, Hg0 dry deposition is the major route for Hg deposition over land, contributing 45% globally, but lower than observational estimates of 50–90%.\cite{106,107}

Uncertainties in Atmospheric Hg Redox Chemistry. We have aimed to provide a mechanistic representation of Hg redox cycling in the atmosphere that reflects current chemical knowledge while being consistent with fundamental observational constraints. This involved a number of assumptions and here we examine the most consequential.

An important uncertainty is the oxidation rate of Hg0 by Br, reflecting both the reaction rate coefficient and the Br concentrations. Laboratory determinations of the Hg0+Br rate coefficient vary from 3.6×10^{-13} to 3.2×10^{-12} cm3 molec$^{-1}$ s$^{-1}$ (at 298 K, 1 atm).\cite{44,45,108} We use the rate coefficient from Donohoue et al.,\cite{45} which is at the low end, because their measurements are least affected by wall reactions and were made over a range of pressures and temperatures. Using a higher value would require slower conversion of BrHgI to HgII, faster HgII reduction, and/or lower Br concentrations to maintain the same Hg lifetime against deposition in the model. The BrHgI → HgII rate can be slowed by lowering the BrHgI+O$_3$ and increasing the BrHgII+CO rate coefficients, and while the changes needed are substantial (factor of 10) since the competing BrHgI → Hg0 reactions are currently negligible, they would be within the uncertainties of the theoretically derived rate coefficients.\cite{109} Faster HgII reduction would still need to fit the observed rainwater photoreduction rates.\cite{57} Faster Hg0+Br kinetics could be offset by lower Br concentrations, but the concentrations used here are at the low end of current models as discussed by Wang et al.\cite{34,58}

The atmospheric OH concentrations are well-known\cite{110} and the Hg0+OH rate coefficient agrees between two independent laboratory studies,\cite{54,55} although the pressure and temperature dependences of the rate coefficient need to be further investigated. There are large uncertainties in the HOHgM, HOOHgM+O$_3$, HOHgMO+CO, and HOHgMO+CH$_4$ reactions that control the branching between HOHgM → Hg0 and HOHgI → HgII(OH)$_2$. The HOHgM rate coefficient depends on the HO–Hg bond strength, which has not been

![Figure 4](https://doi.org/10.1021/acs.est.1c03160) Environmental Science & Technology pubs.acs.org/est Article

Figure 4. Annual mean (2013–2015) HgII deposition fluxes in GEOS-Chem. The top panels show HgII wet deposition fluxes overlaid by observations (filled circles and triangles) compiled by Travnikov et al.\cite{51} (courtesy of Hélène Angot), Sprovieri et al.,\cite{115} AMAP/UNEP,\cite{114} and Fu et al.\cite{116} Filled triangles represent high altitude sites. We only include observations collected between 2010 and 2015. Values inset are the means ± standard deviations for the global ensemble of sites (left panel) and for the subset of sites over the contiguous U.S. and Canada (right panel). The bottom panel shows total (wet + dry) HgII deposition fluxes.
determined experimentally. A moderate change in this rate coefficient could be balanced by proportional changes in the rate coefficients of the other three reactions. Slower dissociation of HOHgI (stronger bond) would increase net HgII oxidation in the subtropical free troposphere and help improve the simulation of the observed Hg wet deposition flux maximum over the southeast U.S.

An important part of our mechanism is the photoreduction of HgII—organic complexes in aerosols but there are no direct data to inform the photoreduction rates. Here we have assumed similarity with photoreduction in cloud droplets, which is informed (though weakly so) by the rainwater photoreduction data.335 Dissolved organic carbon is known to be critical for Hg0 photoreduction in aquatic systems,70–72 but there is no knowledge of the relevant organic ligands for atmospheric HgII. A better understanding of particulate and cloud HgII speciation, and the implications for photoreduction, would greatly advance our modeling capability.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.1c03160.

Energy profiles for the BrHgI+O3 reaction (Figure S1); Preliminary rate coefficient for BrHgI+O3 as a function of temperature (Figure S2); Potential energy surface for the HOHgI+O3 reaction (Figure S3); Comparison of the zonal mean Br and BrO concentrations in GEOS-Chem version 12.9 and from Schmidt et al. (Figure S4); Main Hg redox pathways and the zonal distribution of Hg0 and HgII in the simulation with the Schmidt et al. Br concentration (Figure S5); Observed and modeled seasonal variation of surface Hg0 concentrations (Figure S6); and Observed and modeled annual surface HgII concentrations (Figure S7) (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Viral Shah — Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; orcid.org/0000-0001-5547-106X; Email: vshah@seas.harvard.edu

Authors

Daniel J. Jacob — Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States

Colin P. Thackray — Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States

Xuan Wang — School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; orcid.org/0000-0002-8532-5773

Elsie M. Sunderland — Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States; orcid.org/0000-0003-0386-9548

Theodore S. Dibble — Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States; orcid.org/0000-0002-0023-8233

Alfonso Saiz-Lopez — Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain; orcid.org/0000-0002-0060-1581

Ivan Cernušík — Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; orcid.org/0000-0002-6597-3095

Vladimir Kelló — Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia

Pedro J. Castro — Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, New York 13210, United States

Rongrong Wu — Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States

Chuji Wang — Department of Physics and Astronomy, Mississippi State University, Starkville, Mississippi 39759, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.est.1c03160

Author Contributions

V.S. and D.J.J. developed the chemical mechanism with input from C.P.T., E.M.S., T.S.D., and A.S.-L.; V.S. and C.P.T. implemented the mechanism in GEOS-Chem; X.W. developed the current GEOS-Chem halogen simulation; T.S.D, I.C, and P.J.C. performed the quantum chemistry calculations for the reactions of BrHg and HOHg with ozone; R.W. and C.W. conducted laboratory experiments on the BrHg and ozone reaction; V.S. and D.J.J. wrote the manuscript with contributions from all coauthors.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was funded by the USEPA Science to Achieve Results (STAR) Program. This work was also supported by the Slovak Grant Agency VEGA (grant 1/077719), the high-performance computing facility of the Centre for Information Technology (https://uniba.sk/en/HPC-Clara) at Comenius University, and the U.S. National Science Foundation under awards 1609848 and 2004100. We thank Hélène Angot (CU Boulder) for the Hg measurement data.

■ REFERENCES

Emission Parameters for Future Predictions.

Methane, Hydroxyl, and Their Uncertainties: Key Climate and Pollution on Regional and Global Scales; Pirrone, N., Maha Gaseous Elemental Hg in the Atmosphere. In Dynamics of Mercury

2016

13

2017.

