Transmission and stable inheritance of carbapenemase gene (bla_{KPC-2} or bla_{NDM-1})-encoding and mcr-1-encoding plasmids in clinical Enterobacteriaceae strains

Liu, Xiaobo; Chan, Edward Wai-Chi; Chen, Sheng

Published in:
Journal of Global Antimicrobial Resistance

Published: 01/09/2021

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY-NC-ND

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.jgar.2021.05.022

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Transmission and stable inheritance of carbapenemase gene (bla\textsubscript{KPC-2} or bla\textsubscript{NDM-1})-encoding and mcr-1-encoding plasmids in clinical Enterobacteriaceae strains

Xiaobo Liua, Edward Wai-Chi Chanb, Sheng Chena,b,c,*

a Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, P.R. China
b State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
c Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR

A R T I C L E I N F O

Article history:
Received 29 June 2020
Revised 28 March 2021
Accepted 30 May 2021
Available online 7 July 2021

Editor: Stefania Stefani

Keywords:
Plasmid
Conjugation
Transmission
bla\textsubscript{NDM-1}
bla\textsubscript{KPC-2}
mcr-1

A B S T R A C T

Objectives: The aim of this study was to investigate the potential for transmission and heritability of carbapenemase gene (bla\textsubscript{KPC-2} or bla\textsubscript{NDM-1})-encoding or mcr-1-encoding plasmids in clinical Enterobacteriaceae strains.

Methods: Potential for transmission of carbapenemase gene (bla\textsubscript{KPC-2} or bla\textsubscript{NDM-1})-encoding or mcr-1-encoding plasmids in clinical Enterobacteriaceae strains was tested in three conjugation models, namely filter-mating conjugation in laboratory conditions, a meat product model and the gastrointestinal (GI) tract of rats. Plasmid stability in Enterobacteriaceae strains was also determined.

Results: We demonstrated that plasmids carrying a carbapenemase gene (bla\textsubscript{KPC-2} or bla\textsubscript{NDM-1}) could be efficiently conjugated to strains carrying the mcr-1 gene and vice versa, and that these plasmids could stably co-exist in clinical Enterobacteriaceae strains. These findings suggest that Enterobacteriaceae can readily acquire phenotypic resistance to both carbapenems and colistin in natural environments such as food products and the GI tract of human and animals.

Conclusion: Gene transfer events are common among members of the Enterobacteriaceae and serve as a key mechanism facilitating adaptation to new environments. Development of innovative strategies and surveillance measures to curtail the dissemination of multidrug resistance plasmids is necessary. Transmission and stable inheritance of these two types of plasmids would lead to the emergence of multidrug-resistant pathogens that are resistant to all currently available last-line antibiotics for Gram-negative bacterial infections.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) strains, an important group of bacterial pathogens, have become an increasingly common causative agent of hospital infections. Production of Klebsiella pneumoniae carbapenemase (KPC) or New Delhi metallo-\(\beta\)-lactamases (NDM) is a major mechanism of carbapenem resistance in CRE [1]. The bla\textsubscript{KPC} gene is known to be harboured by plasmids of various types, such as IncI2, IncX, IncF and CoIE1 plasmids, whereas bla\textsubscript{NDM-1} is mainly located on plasmids of IncX3 type [2–4]. Global dissemination of KPC-producing and NDM-producing Enterobacteriaceae and the emergence of mobile genetic elements (MGEs) that possess the ability to disseminate rapidly among a broad range of species have rendered KPC- and NDM-producing organisms a worldwide public-health threat in recent years.

Colistin has been regarded as an antibiotic of last resort for the treatment of serious infections caused by CRE [5,6]. However, discovery of the conjugative plasmid-mediated mcr-1 gene implied the possibility of horizontal transfer of colistin resistance [5,7]. Until now, several reports have documented carriage of the mcr-1 gene on plasmids of IncX4, IncI2, IncHI2, IncFII and IncP replicon.
types in different species of Enterobacteriaceae. Importantly, such plasmids were found to exhibit high transmission rates among various pathogenic strains [8,9]. Emergence of the plasmid-borne mcr-1 gene has seriously limited future therapeutic options against CRE and prompted researchers to investigate the underlying mechanisms of transmission of such colistin resistance determinants.

Horizontal gene transfer (HGT) is a key mechanism by which bacteria evolve to become resistant to antibiotics through acquisition of novel resistance genes [10]. In the present study, we studied the transferability of plasmids carrying a carbapenemase gene (bla_{KPC-2} or bla_{NDM-1}) or the mcr-1 gene among clinical Enterobacteriaceae strains in various models in order to investigate the potential for transmission and heritability of these plasmids to converge in one bacterial host to produce a multidrug-resistant organism.

2. Materials and methods

2.1. Bacterial isolates

A total of seven different types of bla_{KPC-2}-bearing plasmids of various sizes and four different types of bla_{NDM-1}-bearing plasmids, which were recovered from clinical CRE strains from our previous national surveillance study [11], were selected for this study after confirmation by PCR [12] and NextSeq 500 (Illumina Inc., San Diego, CA, USA) and MiniION (Oxford Nanopore Technologies, Oxford, UK) sequencing (Supplementary Table S1). Three major types of conjugal plasmids carrying the mcr-1 gene, namely an ~33-kb IncX4 plasmid, an ~66-kb IncI2 plasmid and an ~250-kb IncH2 plasmid, all recovered from <i>Escherichia coli</i> strains isolated from food samples, were also tested (Supplementary Table S1) [7,13,14].

2.2. In vitro filter-mating experiment

An in vitro filter-mating assay to assess the HGT potential of plasmids was performed at 37°C for 16 h as previously described [14] with modifications. Eleven different types of plasmids harbouring carbapenemase genes (bla_{NDM-1} or bla_{KPC-2}) and three types of plasmids carrying the mcr-1 gene were involved in the pairwise conjugation experiment (Supplementary Table S1). The pairwise combinations of donor and recipient strain used in the filter-mating experiment are listed in Table 1. Strains (1 × 10⁹ CFU) were mixed in a donor:recipient ratio of 1:1 and transconjugants were selected using China Blue agar containing colistin (2 μg/mL) and meropenem (1 μg/mL). Controls were also performed by plating recipient and donor cells on China Blue agar containing single and double antibiotics. All transconjugants were verified for the presence of the mcr-1 and carbapenemase (bla_{NDM-1} or bla_{KPC-2}) genes by PCR using primers as previously described [5,12]. Minimum inhibitory concentrations (MICs) were determined by the agar dilution method based on Clinical and Laboratory Standards Institute (CLSI) guidelines [15]. All conjugation experiments were repeated at least twice, and the conjugation frequencies of strains in three conjugation models were calculated by the following equation [5]:

Conjugation frequency = \(\frac{T}{D+R} \times 100\% \)

where T, D and R denote the densities of transconjugants, donors and recipients, respectively.

2.3. Pulsed-field gel electrophoresis (PFGE) and Southern hybridisation

Transconjugants co-harbouring the mcr-1 and carbapenemase (bla_{KPC-2} or bla_{NDM-1}) genes were subjected to further characterisation by Xbal-PFGE as previously described to identify the donor and receptor strains in all three models in this study [7]. SI-PFGE and Southern hybridisation were also performed as previously described to confirm the transmission of plasmids [7]. Examples are shown in Supplementary Figs S1 and S2.

2.4. In vitro conjugation on meat product at different temperatures

Based on the results of the filter-mating conjugation experiment, bla_{NDM-1}-bearing NBJE55 and bla_{KPC-2}-bearing K84 CRE strains and three mcr-1-positive E. coli strains (M25, M163 and M14) were selected and conjugated with each other on food samples in vitro. Pork samples were purchased from a supermarket in Shenzhen and were sterilely cut into cubes with a size of approximately 6 cm × 6 cm × 0.8 cm. Bacterial suspensions (100 μL with 1 × 10⁹ CFU) were pipetted onto the surface of pork samples at a ratio of 1:1 and were mixed well. Petri dishes were then gently rotated to make sure that the bacterial suspensions covered the whole surface of the pork samples. To see whether the plasmids carrying a carbapenemase gene (bla_{KPC-2} or bla_{NDM-1}) and those carrying the mcr-1 gene could be conjugated between bacteria at a storage temperature of 4°C, ambient temperature of 25°C or optimum growth temperature of 37°C, each piece of pork placed in a culture dish was incubated at the respective temperatures. Following overnight incubation, pork samples were cut into small pieces under sterile conditions and were re-suspended in 50 mL of sterile saline. Transconjugants were selected as described above. Single colonies were picked and identified by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF), and carriage of plasmids was confirmed by PCR [5,12], SI-PFGE and Southern hybridisation [14]. Control experiments were conducted and the conjugation frequencies of strains were measured as mentioned above. Three replicates were used for meat product experiments.

2.5. In vivo transconjugation in the rat gastrointestinal (GI) tract

Animals were purchased from Guangdong Medical Laboratory Animal Center and were allowed free access to food and water. They were examined twice daily for any clinical signs such as behaviour, GI function, respiratory distress, food and water intake, etc. The experimental protocol was approved by the Research Animal Care and Use Committee of the Hong Kong Polytechnic University. Briefly, bacteria that grew to a dose of 10⁹ CFU were centrifuged at 4°C and were then re-suspended with sterile saline. Sterile saline solution of donor and recipient strains for each pairwise was mixed and immediately inoculated into the GI tract of a rat. Thirty specific pathogen-free (SPF) male Sprague–Dawley (SD) rats (11–15 weeks old) were randomly divided into five groups after a background check: one group was infected intragastrically with strains K84 and M14, one group was infected with strains K84 and M163, one group was infected with strains NBJE55 and M14, one group was infected with strains NBJE55 and M163, and the remaining group was treated with sterile saline as a control. Each of one group was infected intragastrically at 0, 24 and 72 h with 1 × 10⁹ CFU of a mixture of CRE and mcr-1-bearing strain pairs and one with saline as control. Fresh faeces (500–1000 mg) was collected after 24 h of inoculation at three time points (24, 48 and 96 h). Faecal samples were diluted 10-fold in sterile saline and re-suspended. Then, 100 μL of the suspension was plated on China Blue agar without antibiotics and China Blue agar containing colistin (2 μg/mL) and meropenem (1 μg/mL), respectively. The conjugation frequency of strains was measured as described above. Three replicates were used for rat GI tract experiments.
Table 1
Genetic characteristics of transconjugants obtained by the in vitro filter-mating method

<table>
<thead>
<tr>
<th>Conjugation between bacterial strains*</th>
<th>Transconjugants**</th>
<th>MIC (µg/mL)</th>
<th>Plasmid frequency†</th>
<th>Conjugation frequency†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COL</td>
<td>MEM</td>
<td></td>
</tr>
<tr>
<td>M14/M25/M163</td>
<td>K26</td>
<td>K26-M25</td>
<td>≥4</td>
<td>2.3 × 10⁻² ± 1.7 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M14-K26</td>
<td>≥2</td>
<td>8.0 × 10⁻² ± 3.1 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M25-K2</td>
<td>≥4</td>
<td>5.0 × 10⁻² ± 7.2 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M163-K2</td>
<td>≥4</td>
<td>5.0 × 10⁻² ± 7.2 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M25-K4</td>
<td>≥4</td>
<td>8.7 × 10⁻³ ± 1.2 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M163-K4</td>
<td>≥2</td>
<td>3.5 × 10⁻⁵ ± 1.2 × 10⁻⁵ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K5-K25</td>
<td>≥2</td>
<td>3.0 × 10⁻² ± 3.1 × 10⁻² (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M163-M25</td>
<td>≥4</td>
<td>2.0 × 10⁻⁴ ± 3.7 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K5-M14</td>
<td>≥4</td>
<td>2.0 × 10⁻² ± 3.7 × 10⁻² (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K5-M163</td>
<td>≥4</td>
<td>1.6 × 10⁻⁴ ± 3.7 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M163-K39</td>
<td>≥4</td>
<td>6.9 × 10⁻⁰ ± 4.2 × 10⁻⁰ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M14-K39</td>
<td>≥4</td>
<td>2.0 × 10⁻⁰ ± 4.2 × 10⁻⁰ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K84-K25</td>
<td>≥4</td>
<td>3.8 × 10⁻² ± 4.5 × 10⁻² (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M84-M163</td>
<td>≥3</td>
<td>3.7 × 10⁻² ± 3.6 × 10⁻² (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M84-M14</td>
<td>≥4</td>
<td>4.7 × 10⁻² ± 3.7 × 10⁻² (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K7-K25</td>
<td>≥4</td>
<td>5.5 × 10⁻³ ± 9.9 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K7-M163</td>
<td>≥4</td>
<td>9.7 × 10⁻⁰ ± 9.9 × 10⁻⁰ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K7-M14</td>
<td>≥4</td>
<td>1.3 × 10⁻² ± 1.8 × 10⁻² (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBJE55</td>
<td>≥4</td>
<td>1.8 × 10⁻⁰ ± 4.8 × 10⁻¹ (a)</td>
</tr>
<tr>
<td>M163-NBJE55</td>
<td>M25-NBJE55</td>
<td>≥4</td>
<td>4.8 × 10⁻² ± 2.6 × 10⁻² (a)</td>
<td>1.8 × 10⁻³ ± 9.4 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>4.7 × 10⁻² ± 7.6 × 10⁻² (a)</td>
<td>1.9 × 10⁻³ ± 9.0 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>5.4 × 10⁻² ± 1.7 × 10⁻² (a)</td>
<td>1.9 × 10⁻³ ± 9.0 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>1.0 × 10⁻² ± 0.9 × 10⁻² (a)</td>
<td>1.9 × 10⁻³ ± 9.0 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>5.1 × 10⁻³ ± 5.6 × 10⁻³ (a)</td>
<td>4.9 × 10⁻⁴ ± 2.0 × 10⁻⁵ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>3.3 × 10⁻⁴ ± 2.0 × 10⁻⁴ (a)</td>
<td>2.7 × 10⁻⁵ ± 2.0 × 10⁻⁶ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>2.7 × 10⁻² ± 2.8 × 10⁻² (a)</td>
<td>4.6 × 10⁻³ ± 3.1 × 10⁻⁴ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>3.5 × 10⁻¹ ± 5.5 × 10⁻¹ (a)</td>
<td>2.9 × 10⁻² ± 6.4 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>4.9 × 10⁻¹ ± 5.5 × 10⁻¹ (a)</td>
<td>3.9 × 10⁻² ± 6.4 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>2.8 × 10⁻⁴ ± 2.0 × 10⁻⁴ (a)</td>
<td>2.1 × 10⁻⁵ ± 2.0 × 10⁻⁶ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>4.8 × 10⁻¹ ± 6.0 × 10⁻¹ (a)</td>
<td>5.3 × 10⁻² ± 3.6 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>3.6 × 10⁻¹ ± 7.5 × 10⁻¹ (a)</td>
<td>5.3 × 10⁻² ± 3.6 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>0.0 × 10⁻¹ ± 1.7 × 10⁻¹ (a)</td>
<td>1.2 × 10⁻² ± 1.7 × 10⁻³ (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥4</td>
<td>2.6 × 10⁻⁴ ± 5.3 × 10⁻⁵ (a)</td>
<td>2.6 × 10⁻⁵ ± 5.3 × 10⁻⁶ (a)</td>
</tr>
</tbody>
</table>

MIC, minimum inhibitory concentration; COL, colistin; MEM, meropenem.

Strains carrying the bla_{IMP}-C₃, bla_{PER}-I₂ and mcr-1 genes are denoted by the initials 'K', 'N' and 'M', respectively. Detailed genetic information of the test strains is provided in Supplementary Table S1.

First strain name represents the donor strain and second strain name represents the recipient strain, which was confirmed by Xhol-PFGE.

† Frequencies are the mean ± standard deviation of triplicate analyses. Values followed by different letters in parentheses in the same column are significantly different (P < 0.05).
2.6. Confirmation of plasmid stability

A single colony of each transconjugant obtained in different models was cultured overnight in Luria–Bertani (LB) broth without antibiotics. The overnight culture was then diluted at 1:100 in 10 mL of fresh LB broth. Dilution and serial passage was conducted every 24 h for 20 consecutive days. Culture collected on the 1st, 5th, 10th, 15th and 20th passage was diluted to 10⁻², 10⁻⁴ and 10⁻⁶ after a 10-fold serial dilution, respectively, and then spread onto three China Blue agar plates with and without colistin (2 μg/mL) and meropenem (1 μg/mL). CFU from plates containing antibiotics were considered as plasmid-positive colonies, while CFU from antibiotic-free plates were considered as the total population in the culture. The plasmid frequency was determined by dividing plasmid-positive CFU by the total population CFU and was representative of plasmid stability of passaged transconjugants of each type. A higher plasmid frequency suggested higher stability of the plasmid in the host.

2.7. Statistical analysis

All analyses were performed in triplicate. Experimental data are expressed as the mean ± standard deviation. Statistical analysis of all data was performed using IBM SPSS Statistics v.25.0 (IBM Corp, Armonk, NY, USA). Analysis of variance (ANOVA) and Duncan's multiple range test were used to determine significant differences (P < 0.05).

3. Results

3.1. Carbenapenemase gene (blaKPC-2 or blaNDM-1)-bearing plasmids and mcr-1-bearing plasmids are compatible with each other in Enterobacteriaceae

Klebsiella pneumoniae and E. coli strains carrying seven and four blaKPC-2- and blaNDM-1-bearing plasmids, respectively, were subjected to two-way in vitro conjugation analysis with E. coli strains carrying three different types of mcr-1-bearing plasmids. These plasmids were all of the different types of plasmids that we have in our laboratory after the Illumina NextSeq 500 and MinION sequencing confirmation and they represented the most common MGEs that harbour carbenapenemase genes and the mcr-1 gene. Except for three pairs of strains (K26/M163, K2/M14 and K4/M14) for which conjugation was not successful, all plasmids carrying a carbenapenemase gene in these Enterobacteriaceae strains could undergo conjugation with strains harbouring three types of mcr-1-bearing plasmids to form transconjugants that co-harboured blaKPC-2/mcr-1 or blaNDM-1/mcr-1 plasmids (Table 1). To determine the genetic identity of donor and recipient strains of these transconjugants, one transconjugant collected from each pair of strains in the conjugation experiment was selected for cluster analysis by XbaI-PFGE. Our data revealed that plasmids carrying a carbenapenemase gene could be transferred to strains carrying an mcr-1-bearing plasmid, and vice versa, and that plasmids carrying carbenapenemase genes can co-exist with plasmids carrying the mcr-1 gene in a single bacterial host at 25°C. Conjugation efficiencies were in the range of 10⁻¹ to 10⁻⁵. Interestingly, the conjugation frequency of 25-M14-K84 and 25-M14-NBJE55 was significantly higher than other transconjugants, suggesting that temperature played an important role in the efficiency of plasmid transmission. Moreover, transmission of transconjugants remained stable after serial passage, confirming that plasmids harbouring carbenapenemase genes (blaKPC-2 or blaNDM-1) and those carrying the mcr-1 gene could stably co-exist in Enterobacteriaceae strains (Table 2).

3.3. Plasmid transmission in the rat gastrointestinal (GI) tract

To gain further understanding of the efficiency of plasmid transmission in the GI tract, a preeminent incubator for development of antimicrobial-resistant organisms and a perfect place for plasmid transmission under various selection pressures, a SD rat GI tract transmission model was established. Strains K84 and NBJE55 were subjected to two-way conjugation analysis in the rat GI tract with M163 and M14 in this study. All rats used in this experiment were checked for the presence of bacteria carrying blaKPC-2-, blaNDM-1- or mcr-1-bearing plasmids, with the results showing that all animals were clear of these antimicrobial resistance genes. After 2 days of background check, SD rats were co-infected with four different sets of bacterial strains, namely K84-M14, K84-M163, NBJE55-M14 and NBJE55-M163, by oral gavage with culture of a bacterial concentration of ~10⁶ CFU/mL at 24, 48 and 96 h, respectively (Supplementary Table S2). Following confirmation by PCR, XbaI-PFGE, S1-PFGE and Southern hybridisation analysis, our results showed that the blaKPC-2-bearing plasmid from strain K84 could be conjugated to strain M14 at 24, 48 and 96 h post-inoculation; it could also be conjugated to strain M163 at 24 h and 48 h post-inoculation, with the blaKPC-2-bearing strain serving as the donor strain.
the bla_{NDM-1}-bearing plasmid harboured by strain NBJE55 could be conjugated to strain M163 at 24 h and 96 h post-inoculation, with the bla_{NDM-1}-bearing strain acting as the receipt strain (Table 3; Supplementary Table S2). The conjugation frequency ranged from 8.8×10^{-6} to 7.3×10^{-4}, with significant differences observed in transconjugants obtained from the GI tract of rats. These findings suggested that plasmids harbouring carbapenemase genes (bla_{QPC-2} or bla_{NDM-1}) in clinical CRE strains could be effectively transmitted to mcr-1-bearing <i>E. coli</i> strains in the animal GI tract to produce organisms resistant to both colistin and carbapenems, suggesting that the animal GI tract can serve as an incubator for development of antimicrobial resistance. The plasmid frequency of transconjugants obtained from the GI tract of rats was shown to be significantly different ($P < 0.05$) and the plasmid frequency of 1-M163-NBJE55 was significantly higher than other transconjugants. However, transconjugants collected from the in vivo rat GI tract model remained genetically stable after serial passage, confirming that plasmids carrying carbapenemase genes (bla_{QPC-2} or bla_{NDM-1}) can stably co-exist with those carrying mcr-1 in Enterobacteriaceae strains (Table 3).

4. Discussion

Since the emergence of <i>K. pneumoniae</i> strains producing the carbapenemase KPC [1], the New Delhi metallo-β-lactamase NDM [16] and the MGE-encoded colistin resistance determinant MCR-1 [5], several reports have documented that transmission of these genes can occur via clonal spread and HGT [2,7,17], posing a-
rious public-health threat worldwide. Moreover, simultaneous acquisition of mcr-1 and carbapenemase genes by K. pneumoniae and E. coli strains has recently been reported in several studies [18–20]; however, little is known about the molecular mechanisms underlying the transition from a monodrug-resistant strain into a multidrug-resistant status via HGT. Currently, dissemination of resistance genes among bacterial pathogens by HGT is considered a key mechanism that not only gives rise to an alarming increase in the incidence of antibiotic resistance both in hospital settings and animal husbandry, but also drives genetic diversification and evolution of pathogens [21,22]. In the present study, we demonstrated, using both in vitro and in vivo models, that plasmids harboring carbapenemase genes (blaKPC-2 and blanDM-1) and mcr-1-bearing plasmids obtained both from environmental and clinical settings could be acquired by a single bacterial strain and stably inherited by its offspring.

Among the three known canonical gene transfer mechanisms (conjugation, transduction and transformation), conjugation has been demonstrated to be the most efficient in mediating transfer of antimicrobial resistance genes between various bacterial species [23], during which plasmids that harbour resistance genes can be acquired by a recipient cells through direct contact with a donor organism [21]. The conjugation process therefore enables bacteria to acquire the ability to express new phenotypes, including resistance and virulence [10]. In the present study, the ability of bacteria to undergo conjugation was tested both in vitro and in vivo assays. Overall, seven types of blaqPC-2-bearing plasmids, four types of blanDM-1-bearing plasmids with various sizes, and three major types of mcr-1-bearing plasmids were tested in this study. Our data confirm that these plasmids were compatible with each other, forming strains resistant to both carbapenems and colistin. To assess the efficiency of transmission between plasmids harbouring carbapenemase genes (blaKPC-2 and blanDM-1) and mcr-1 genes in the natural environment, we developed a meat-based model and a rat GI tract transmission model. Different from filter-mating conjugation, bacteria are naturally present on the surface of meat products and inside the GI tract of humans and animals [24]. Our data showed that plasmids harbouring carbapenemase genes (blaKPC-2 and blanDM-1) could be transferred to strains that contained mcr-1-bearing plasmids in the in vitro food model. In particular, temperature was found to be a determining factor of conjugation efficiency since some plasmids could only be conjugated at a certain temperature, while not others. It is noted that filter-mating conjugation exhibited the highest conjugation efficiency, which is probably due to the tight interaction on filter paper compared with natural conditions such as on a meat surface or in the GI tract. The data might suggest that meat and GI tract conjugation models might be better models to study the transmission of multidrug resistance (MDR) plasmids in foodborne pathogens, since natural plasmid transmission would normally occur in food and the animal/human GI tract. Conjugation frequencies in these two models are much lower than that of the filter-mating method, while plasmid frequency remains at a similar level. In addition, some conjugation could be observed in the meat model at ambient temperature and even 4°C, which are normally not tested by the filter-mating method. It is also very interesting to see that 25-M14-K84 and 25-M14-NJ155 could be conjugated at a high conjugation frequency on meat, which is not found in the other two conjugation models. This is consistent with a previous report that HI-type plasmids exhibit higher conjugation frequencies at ambient temperature [25], however, some transconjugants appear to have acquired the H12 plasmid from strain M14 at 37°C in our study. The conditions tested in this model allow us to closely mimic the real-life situation in the natural environment compared with the filter-mating conjugation assays performed in a laboratory. The data also imply for the first time that the storage temperature of food products, if not low enough, can actually promote the transmission of MDR plasmids among organisms residing in the products. In addition to natural transmission among organisms in food samples, our data also showed that the animal GI tract is a perfect niche in which bacteria undergo conjugative plasmid transfer. Conjugative transfer of resistance genes has been reported in different animal models, e.g. transfer of plasmids in the gut of chickens [26] and interspecies transfer of resistance determinants in the human GI tract [27–29]. None the less, our data show that the efficiency of transmission of resistance and virulence genes among members of the human and animal microbiota is underestimated. Our data regarding plasmid transmission in the animal GI tract confirm that both plasmids carrying carbapenemase (blaKPC-2 and blanDM-1) and mcr-1 genes could be transmitted effectively in the animal GI tract, allowing Enterobacteriaceae strains to acquire MGEs that encode phenotypic resistance to both carbapenems and colistin. Transmission and stable inheritance of these two types of plasmids would lead to the emergence of multidrug-resistant pathogens that are resistant to all currently available last-line antibiotics for Gram-negative bacterial infections.

In summary, carbapenemase-producing plasmids could be transmitted into strains harbouring mcr-1 genes via HGT, and vice versa, contributing to the emergence of strains with new and inheritable phenotypes and genotypes. Gene transfer events are likely to be common among members of the Enterobacteriaceae and serve as a key mechanism facilitating adaptation to new environments and evolution. Development of innovative strategies and surveillance measures to curtail the dissemination of MDR plasmids is necessary.

Funding

This work was supported by the National Key R&D Program of China [grant no. 2018YFD0500300]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests

None declared.

Ethical approval

All experimental rats were obtained from Guangdong Medical Laboratory Animal Center and had free access to food and water. All experiments were conducted strictly in accordance with the guidelines of the Chinese Association for the Accreditation of Laboratory Animals Care (CAALAC) issued by mainland China, and the Care and Use of Animals for Experimental Purpose issued by the Agriculture, Fisheries and Conservation Department of Hong Kong SAR, as well as the relevant local animal welfare bodies in China. The permit number of the animal work was 4400720040682. The experimental protocol was approved by the Research Animal Care and Use Committee of the Hong Kong Polytechnic University.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jigar.2021.05.022.

References

