Corrigendum
Three-type Fano interference controlled by the phase transition of Eu$^{3+}$/Pr$^{3+}$: YPO$_4$ (2020 New J. Phys. 22 093008)
Fan, Huanrong; Raza, Faizan; Ahmed, Irfan; Li, Kangkang; Ullah, Habib; Zhang, Yanpeng

Published in:
New Journal of Physics

Published: 01/03/2021

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1088/1367-2630/abe8f8

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 23/12/2023
CORRIGENDUM • OPEN ACCESS

Corrigendum: Three-type Fano interference controlled by the phase transition of Eu$^{3+}$/Pr$^{3+}$: YPO$_4$ (2020 New J. Phys. 22 093008)

To cite this article: Huanrong Fan et al 2021 New J. Phys. 23 039502

View the article online for updates and enhancements.
CORRIGENDUM

Corrigendum: Three-type Fano interference controlled by the phase transition of Eu\(^{3+}/Pr^{3+}:\) YPO\(_4\) (2020 New J. Phys. 22 093008)

Huanrong Fan\(^1\), Faizan Raza\(^1\), Irfan Ahmed\(^2,3,4\), Kangkang Li\(^1\), Habib Ullah\(^1\) and Yanpeng Zhang\(^1,5\)

\(^1\) Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
\(^2\) Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
\(^3\) Electrical Engineering Department, Sukkur IBA University, Sindh 65200, Pakistan
\(^*\) Authors to whom any correspondence should be addressed.
E-mail: iahmed8-c@my.cityu.edu.hk and ypzhang@mail.xjtu.edu.cn

Keywords: dressed spontaneous parametric four-wave mixing Fano, dressed multi-order fluorescence Fano, hybrid Fano interference, phase transition

The captions for figures 3 and 4 in [Fan et al 2020 New J. Phys. 22 093008] contain some mistakes which are corrected in this corrigendum.

![Figure 3](image)

Figure 3. (a1)–(a5) Shows the energy level for pure enhancement, suppression + enhancement, pure suppression, enhancement + suppression, and pure enhancement, respectively. (b1)–(b5) and (c1)–(c5) show the excitation spectrums of Stokes/anti-Stokes and FL, respectively. The excitation spectra are obtained by scanning wavelengths from 580 nm to 610 nm with different \(\Delta_2\) corresponding to energy levels defined in (a1)–(a5). The dash curves of the profile (baseline) in (b) and (c) represents the SP-FWM and MFL signal without dressing, respectively.

We found that there are some mistakes in captions for figures 3 and 4 in [1]. The correct captions are: The numerical results and conclusions in [1] remain unchanged.
Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This work was supported by the National Key R & D Program of China (2017YFA0303700 and 2018YFA0307500), National Natural Science Foundation of China (61975159, 61605154, 11604256, 1180426, and 11904279).

ORCID iDs

Yanpeng Zhang 🐧 https://orcid.org/0000-0002-0954-7681

References