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Abstract

Background: Horizontal Gene Transfer (HGT) refers to the transfer of genetic materials between organisms through
mechanisms other than parent-offspring inheritance. HGTs may affect human health through a large number of
microorganisms, especially the gut microbiomes which the human body harbors. The transferred segments may lead
to complicated local genome structural variations. Details of the local genome structure can elucidate the effects of
the HGTs.

Results: In this work, we propose a graph-based method to reconstruct the local strains from the gut metagenomics
data at the HGT sites. The method is implemented in a package named LEMON. The simulated results indicate that
the method can identify transferred segments accurately on reference sequences of the microbiome. Simulation
results illustrate that LEMON could recover local strains with complicated structure variation. Furthermore, the gene
fusion points detected in real data near HGT breakpoints validate the accuracy of LEMON. Some strains reconstructed
by LEMON have a replication time profile with lower standard error, which demonstrates HGT events recovered by
LEMON is reliable.

Conclusions: Through LEMON we could reconstruct the sequence structure of bacteria, which harbors HGT events.
This helps us to study gene flow among different microbial species.

Keywords: HGT, Local strain, Gut metagenomics, Graph

Background
Horizontal Gene Transfer [1, 2] is the movement of
genetic materials between organisms other than by the
vertical transmission of DNA from parent to offspring [3].
HGTs allow different species to share genomic fragments.
Abundant evidence from genomic data now supports that
HGT plays an important role in evolution. They are a
prevalent and pervasive phenomenon in prokaryotes and
are an important source of genomic innovation in bacte-
ria. They are also often observed in unicellular eukaryotes.

*Correspondence: shuaicli@cityu.edu.hk
1Department of Computer Science, City University of Hong Kong, Kowloon,
Hong Kong SAR, HongKong, China

Recent research suggests that on average 81% of prokary-
otes genes have been involved in HGT at some point
in their history [4]. Their occurrences in multicellular
eukaryotes are rare. However, several significant HGTs are
still observed between bacteria and multicellular eukary-
otes. Some are even common in specific environments.
For example, we have observed HGTs from bacteria to
fungi, from bacteria to the coffee borer beetle [5], as well
as from virus, bacteria, and fungi to animals [6]. These
recent discoveries have reshaped our understanding of
evolutionary mechanisms.

HGTs may affect human health through a large num-
ber of human microbiota [7], including bacteria, fungi,
archaea, and virus. They widely spread on human
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biofluids and tissues, such as skin, lung, mouth. They
are often associated with a range of human diseases and
health conditions, from diabetes, colorectal cancer, to
autism. The Human Microbiome Project [8] was launched
in 2008 to study and understand the human microbiota.
Some functions of the human microbiome, including
antibiotic resistance and adaption to nutrients [9], are
susceptible to HGT events. Mediated by phage, HGT in
S.aureus occurs 1000 times more often than was thought,
which greatly accelerates S.aureus to evolve resistance to
antibiotics [10].

It is necessary to understand HGTs better. However, our
current research is mainly focused on inferring ancient
(lineage) HGTs from genomic sequences [11]. While the
inference result is seriously affected by complex external
factors [12]. For example, during the process of evolution,
the transferred genome segments had been subjected to
loss, mutation and duplication [13]. The inserted genes
may also change the expression and functions of the gene

around the insertion sites, resulting in very complicated
structural variations [14], and temper with the receptor
genome’s stabilities [15–17]. These possibilities compli-
cate our detection of the HGTs. Better results can be
achieved if we can anticipate these changes and correct
for their effects. Recent efforts in human microbiomes
provide us with such an opportunity.

LEMON(https://github.com/lichen2018/LEMON)
takes use of existing shotgun NGS datasets to detect
HGT breakpoints, identify the transferred segments,
and reconstruct the local strain, which has complicated
structure variation.

Methods
HGT events result in the integration of DNA seg-
ments from one species to another species, which will
generate local strains containing DNA segments from
different species. Figure 1. illustrates the workflow of
LEMON.

Fig. 1 The workflow of reconstructing HGT strains from pair-ends shotgun reads. Firstly, we map paired-end shotgun reads against reference
genomes using Burrows Wheeler Aligner (BWA). Then, we select junction reads, whose two sides are mapped to two different references, from the
set of mapped reads. Thirdly, by treating junction reads as points on a two-dimensional plane, we apply Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) to find candidate HGT breakpoints. Fourthly, we utilize split reads to get the exact positions of HGT breakpoints.
Fifthly, according to the detected breakpoints, we could split references into segments, which are linked by junction reads. The coverage of each
segment is calculated according to the number of mapped reads on it. Sixthly, we utilize the linked segments to construct a connected graph. By
inserting dummy edges, we make the graph fully connected. Seventhly, we balance the coverage of each segment. Finally, we traverse the graph to
find local strains. Each local strain should start from the first segment of one receptor and end with the last segment of the same receptor

https://github.com/lichen2018/LEMON
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References
Only the assembly results from multiple time-point
metagenomics data of one individual can be used to
discover the HGT events that exactly occurred between
these time points. However, these samples are insufficient
in published data, and this method cannot evaluate the
difference in HGT events between different samples. To
solve this problem, we construct a reference set S. We
collected all of the bacterial genomes from the National
Center for Biotechnology Information (NCBI) [18]. We
selected one genome for each taxonomy as a representa-
tive genome to reduce the interference from homologous
regions based on (1) the genome was annotated as ref-
erence or representative by NCBI; (2) or the one has
minimal scaffolds number and highest completeness with
contamination <10% in The Genome Taxonomy Database
(GTDB) taxonomy evaluation results for 109,419 bacterial
genomes[19]. The reference set contains 16,093 species
with 1,246,881 scaffolds. Given a shotgun genomic read
dataset R, we utilize BWA[20] to align reads against the
references to identify the set of donors and receptors
involved. These references with adequately covered seg-
ments are then retained. We denote the set of donors and
receptors as D and H respectively.

Breakpoints and segments
The donor segments and receptor segments interweave

in a local strain, separated by HGT breakpoints. We need
to identify the breakpoints and segments involved in the
local strains from D and H. The data are heterogeneous.
According to studies on virus integration [21] and stud-
ies on gut metagenomics, breakpoints are surrounded
by mutations such as Single Nucleotide Variation (SNV),
Copy Number Variation (CNV), short indels and inver-
sions [22]. Hence we detect the breakpoints as follows.

First, we map paired-end shotgun reads to refer-
ence genomes using BWA, here all references are
indexed together to generate Burrows–Wheeler Trans-
form (BWT) indexes. If the two sides of a paired-end read
are mapped to two different references, we call such a
pair a junction pair, such as junction pairs A and B in
Fig. 2a. The mapped positions of each junction pair give
us two breakpoint candidates on the respective references.
The two mapped positions of each junction pair can be
treated as its coordinates on a two-dimensional plane. For
example, Bx and By in Fig. 2b are mapped positions of
junction pair B on reference X and Y respectively. Then
pair B can be transformed to the point B′ with coordi-
nates (Bx, By) in Fig. 2c. All junction pairs mapped to

Fig. 2 a Some paired-end reads cross HGT breakpoints s1 and s2. b The two sides of one junction pair are mapped to two different references. Bx

and By are mapped positions of junction pair B on reference X and Y respectively. c Furthermore, all junction pairs mapped to the same two
references are transformed to points in a coordinate system with their mapped positions as coordinates, e.g. junction pairs A and B are transformed
to points A′(Ax , Ay) and B′(Bx , By). d We apply DBSCAN using Euclidean distance to cluster the breakpoint pair candidates, such as S1 and S2. The
maximum diameter of the cluster circle is the insert size of pair-end reads
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the same two references are transformed to points in a
coordinate system with their mapped positions as coordi-
nates. We then apply the clustering algorithm DBSCAN
[23] using Euclidean distance to cluster the breakpoint
pair candidates. A cluster that is supported by at least one
junction pair is further subjected to analysis to determine
the exact positions of its breakpoints. Next, we identify
the split reads which support a cluster. A read is split if it
can be partitioned into two parts, with each part mapped
to a different reference; we say it supports a cluster if
the mapped positions belong to the cluster. Each cluster
contains multiple breakpoint pair candidates.

To find the exact positions, we use a scoring scheme
to rank the candidate positions. The candidate with the
highest score is reported as the final breakpoint pair posi-
tion. The scoring scheme evaluates the split reads that
support the cluster. Suppose that there are two refer-
ences involved in the cluster, R1 and R2. Given a candidate
genomic positions pair p1 and p2 which belongs to R1 and
R2, respectively, we identify the split reads aligned to R1
where the alignment terminated at position p1. Denote
the portions of such a split read s mapped to R1 and R2
as e1(s) and e2(s), respectively. Then, the score is defined
according to the alignment qualities of e2(s) against R2
nearby p2. The alignment quality qs of e2(s) is calculated
as m/l, where m is the number of matched positions and
should be at least 15 bps, l is the length of e2(s). The qual-
ity score of p2 is calculated as 1 − ∑

s log(1 − qs) of the
alignment qualities of the split read which supports the
respective cluster. Similarly we calculate the score for p1.
The candidate with the highest score is reported as the
final breakpoint pair positions of the cluster.

Each breakpoint involves two segments. Denote the seg-
ment pair as 〈uxu , vxv〉, and xu, xv ∈ {+, −} where + and
− respectively indicates the positive and negative strands,
and u, v ∈ V . We call such a pair a connected pair. A
connected pair is directed; that is, 〈vxv , uxu〉 �= 〈uxu , vxv〉.
Denote the set of connected pairs as E, the copy number
of e ∈ E as c(e) w.r.t. R. It is easy to see that the seg-
ments and connected pairs specify a graph G as illustrated
in Fig. 1.

Local strains
Assume that there are k HGT events captured in G. Since
each HGT event results in one local strain, there are
k local strains to be constructed according to G. The
first and last segments of each local strain are from the
same receptor. Without loss of generality let all the first
segments and the last segments of the local strains at
the integration sites be denoted B = {b1, ..., bk}, and
T = {t1, ..., tk}, respectively. Denote all the other segments
involved in the HGTs as V = {v1, ..., vn} (excluding B and
T). Next, we estimate the number of copies (copy num-
ber) of each segment v within R, and denote it as c(v),

where v ∈ B ∪ T ∪ V . Factors such as species cover-
age are incorporated into the copy number estimation.
For example, if segment vi is belong to a receptor r, the
coverage of vi is cov(vi) and the average coverage of r is
cov(r), then the initial copy number of vi is estimated as
c(vi) = cov(vi)/cov(r).

Our task is to identify the k local strains captured in G.
B and T can be identified with the input data. We assume
that the copy numbers of the first segment and the last
segment are the same for each strain, that is, c(bi) = c(ti),
without loss of generality.

Connectivity
We formulate the problem as a Eulerian circuit problem
to find the k local strains.

First, we insert dummy edges to transform the solu-
tion into a circuit. Without loss of generality, we assume
c(bi) = c(ti), 1 ≤ i ≤ k. We insert a dummy edge 〈t+i , b+

i 〉
with the copy number c(bi) − 1, 1 ≤ i ≤ k. The edges
〈t+i , b+

i+1〉, 1 ≤ i ≤ k − 1, and edge 〈t+k , b+
1 〉 are inserted

with copy number 1.
Second, we insert edges and nodes to ensure connec-

tivity. In the ideal case, for each vertex v ∈ V , there
should be a path that starts from a source node in S, passes
through v, and ends up at some target in T. However,
due to sequencing errors, edges or nodes can be miss-
ing or spuriously introduced. If no target and source can
reach a node v, we remove v and its adjacent edges from
G. If a path exists from some vertex s to v, but no path
exists from v to a target t, we insert vertices and edges
to form a path from v to t. The inserted edge candidates
are taken from the reference sets D and S. If v belongs
to the same reference as t, this would suffice to recon-
struct the path. Otherwise, we add edges that connect
v and some nodes on the reference of t. In both situa-
tions, we use the minimum number of edges required.
All the introduced edges and vertex are assigned a copy
number of 1.

Balancing the graph
Denote the set of inbound edges of u as in(u)

and the outbound edges of u as out(u). That is,
in(u) = {

u|(vx, u+), (u−, ux) ∈ E, x ∈ {+, −}}, out(u) ={
u|(vx, u−), (u+, vx) ∈ E, x ∈ {+, −}}. The in-copy and and

out-copy of a vertex v are defined as cin(u) = ∑
e∈in(u) c(e)

and cout(u) = ∑
e∈out(u) c(e). In the ideal case, we

should have cin(u) = c(u) = cout(u), but this
may be broken due to experimental and sequencing
errors.

We propose an integer linear programming (ILP)
approach to optimize the degree balance property. First,
assign each segment u (respectively μ) to a target copy
number t(u) (respectively t(μ)) according to Eq. 1c
(respectively 1d), to satisfy the degree balance property
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(Eq. 1b). Then, the following program minimizes the dis-
agreement between the assignment copy number and the
target copy number (Eq. 1a).

minimize
∑

u
εu +

∑

μ

εμ (1a)

subject to cin(u) = c(u), cout(u) = c(u),
∀u ∈ S ∪ V ∪ T (1b)
− εu ≤ c(u) − t(u) ≤ εu,
∀u ∈ S ∪ V ∪ T (1c)
− εμ ≤ c(μ) − t(μ) ≤ εμ, ∀μ ∈ J

(1d)
εv, εμ ∈ R+ (1e)
t(u), t(μ) ∈ I , t(u) ≥ 1, t(μ) ≥ 1 (1f)

Finding Eulerian circuit
It can be shown that a Eulerian circuit to the graph con-
structed as illustrated in Fig. 1 gives a solution to our
local strain reconstruction problem. However, the prob-
lem may yield multiple solutions. Each local strain should
start from the first segment of one receptor and end with
the last segment of the same receptor as illustrated in
Fig. 1. Each reconstructed strain may contain several HGT
events. Let the number of HGT events that contributes
to the local strains i be denoted as hi. We choose a solu-
tion in which each reconstructed strain i has hi as large as
possible.

Evaluation metrics
To evaluate the performance of LEMON, we construct
true local strains containing transferred segments and
use LEMON to recover them. We propose two metrics
Reconstruction Accuracy and Detection Rate to measure
results.

We denote the true local strains as {Hi}n
i=1, where n is

the number of receptors, and each true local strain {Hi}
consists of mi segments, that is, Hi =

{
sHi
j

}mi

j=1
. We take

the simulated reads as input of LEMON and construct
reconstructed local strains {hi}n

i=1, where hi is the recon-
structed local strain which has the same receptor of Hi; if
Hi doesn’t have hi in the result, we set hi = ∅. The seg-

ments in hi are denoted shi
j , that is, hi =

{
shi
j

}li

j=1
. We

apply Smith-Waterman algorithm to measure the similar-
ity between segment sequences of Hi and hi. ∀shi

j ∈ hi

and ∀sHi
j ∈ Hi, we consider shi

j and sHi
j to be matched if

and only if the breakpoint pair positions of shi
j are both

located within 20 bp around the breakpoint pair positions

of sHi
j . In our experiments, the parameters match_score

and mismatch_score of Smith-Waterman algorithm are set
as 1 and -1, respectively.

The reconstruction accuracy RAi of hi is defined in
formula (2),

RAi =
{

SW (hi,Hi)
mi∗match_score , hi �= ∅

0, hi = ∅.
(2)

Here, SW (hi, Hi) is the alignment score of hi and Hi, while
mi is the number of segments in Hi. When all segments
are matched in hi and Hi, which means all transferred
segments are recovered. So SW (hi, Hi) is equal to mi ∗
match_score, that is RAi = 1.

We set the number of repetitions N as 8 and define the
mean value of reconstruction accuracy R̄A as follows,

R̄A = 1
N

N∑

k=1

∑N
i=1 RAik

nk
(3)

nk denotes the number of non-empty hi in the j-th repeti-
tions.

An acceptable detection of one transferred segment
should have its breakpoint pair located within 20 bp
[24] of the true breakpoint pair as mentioned in
“Breakpoints and segments” section. The Detection Rate is
defined as the rate of the number of acceptable recovered
transferred segments and the number of all transferred
segments. The average detection rate is the average of 8
repetitions for each test.

Software parameter setting
Most third-party tools used in this article are set default
parameters, including BWA, LUMPY [25], iRep [26],
and STAR-Fusion [27]. The parameters of DBSCAN are
eps, which is the maximum radius of one cluster, and
minsample, which is the minimum number of points in one
cluster. In our paper, eps is set as the average insert size.
minsample is set as 1.

Results
HGT events detection in simulated human gut
microbiomes
To simulate human gut microbiome with different com-
plexity as mentioned in “Local strains” section, we con-
structed 5 simulated microbiomes containing 160, 320,
640, 1280, 2560 species, respectively. For each simulated
microbiome, 5 different amounts (20, 40, 60, 80, 100) of
HGT events were generated. For each HGT event, we
randomly selected two reference sequences as the recep-
tor and donor respectively. On the donor, we randomly
selected one 10k bp sequence region as a transferred seg-
ment and inserted it to a randomly selected insertion
position on the receptor. In this simulation, each HGT
event contained one transferred segment. We denoted the
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new receptor sequence containing transferred segments
as the true local strain. All true local strains were used to
generated 20X paired-end reads with WGSIM [28] as an
input of LEMON. Eight repetitions were performed for
every test.

In order to prove the performance of LEMON, we
compared its performance with another popular break-
point detection-based structural variant discovery soft-
ware LUMPY.

Figure 3 illustrates a Comparison of Reconstruction
Accuracy and Detection Rate between LEMON and
LUMPY under different simulated conditions. The red
dot in each boxplot denotes the mean value. As we can
see, most mean values of Reconstruction Accuracy and
Detection Rate achieved by LEMON are higher than those
achieved by LUMPY, which demonstrates that LEMON
can reconstruct more accurate strains and detect more
transferred segments than LUMPY.

HGT breakpoints detection
In order to evaluate the performance of LEMON in HGT
breakpoints detection as mentioned in “Breakpoints and
segments” section, we applied it to local strains with
different coverage and compared the performance with
LUMPY. HGT events with random receptors, donors and
breakpoints were generated in 100 randomly selected
microbials, resulting in 60 local strains with 4260 HGT
breakpoints. The HGT breakpoint is the insertion posi-
tion of donor segments such as s1 and s2 in Fig. 2a.
The paired-end reads generated from these local strains
with 10 different values (2X, 5X, 10X, 15X, 20X, 30X,
40X, 50X, 60X, and 70X) of depth were input of LEMON
and LUMPY. The performance is measured in terms of

Sensitivity and False Discovery Rate (FDR) in breakpoints
detection, and the bearing bias is 20 bp. If the distance
between the detected breakpoint position and the true
position is larger than 20 bp, we treat this detected posi-
tion as one false detected position. Then if the distance is
less than 20 bp, the detected position is treated as one true
detected position. Therefore, FDR is the rate of false dis-
covered positions among all discovered breakpoint posi-
tions. Sensitivity is the rate of true detected positions
among all true breakpoint positions. LEMON has higher
sensitivity and lower FDR than LUMPY across different
coverage levels as illustrated in Fig. 4. At low coverage
level, e.g. 2X and 5X coverage, LEMON can detect 22.39%
and 51.19% of all HGT breakpoints, whereas LUMPY
can detect 6.86% and 31.12% of all HGT breakpoints. At
a higher coverage level, LEMON remains slightly better
than LUMPY. For example, from 10X to 70X coverage,
the detection sensitivity of LEMON ranges from 79.03
to 94.79%, whereas the detection sensitivity of LUMPY
ranges from 70.06 to 93.47%. LEMON has lower FDR
than LUMPY across different coverage levels, for exam-
ple, at 2X, the FDR of LEMON is 0.002, while the FDR of
LUMPY is 0.016. At 70X, the FDR of LEMON and LUMPY
are 0.0034 and 0.010 respectively. Therefore, LEMON can
detect more accurate breakpoints than LUMPY.

HGT strains reconstruction with complicated HGT event
structure
In this simulation, we set the number of species s to 2560
and the number of HGT events to 100. In order to simu-
late a complicated HGT event structure, we changed the
number of transferred segments in each HGT event from
1 to 5. Simulated paired-end reads were generated from

Fig. 3 Comparison of Reconstruction Accuracy and Detection Rate between LEMON and LUMPY under different simulated conditions. The red dot
in each boxplot is the mean value. Most mean values of Reconstruction accuracy and Detection rate achieved by LEMON are higher than those
achieved by LUMPY
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Fig. 4 Sensitivity and FDR comparison between ours and LUMPY. At low coverage level, LEMON is more sensitive than LUMPY. At higher coverage
level, LEMON remains slightly better than LUMPY. LEMON has lower FDR than LUMPY across different coverage levels

true local strains by using WGSIM at 5X, 10X, 20X, and
30X coverage. 4 repetitions were performed.

Figure 5 shows the Comparison of Reconstruction
Accuracy between LEMON and LUMPY under different
coverage and number of transferred segments in one HGT
event. We use �RA = RALEMON − RALUMPY to mea-
sure the performance difference between LEMON and
LUMPY. If �RA is positive, LEMON achieves a higher
RA than LUMPY. As we can see from Fig. 5a, all �RA
are positive and �RA decreases as coverage increases.

Figure 5b demonstrates that under different complexity of
HGT event, RALEMON is better than RALUMPY . Figure 5c
gives an example of one HGT event containing a dif-
ferent number of transferred segments. Figure 5d and e
demonstrate that LEMON has better performance than
LUMPY across different levels of coverage, especially at
low coverage levels, such as 5X and 10X.

In Fig. 6, we compare local strains reconstructed by
LEMON and LUMPY at 5X and 10X coverage levels. The
true local strain contains two HGT events A and B. Each

Fig. 5 Comparison of Reconstruction Accuracy between LEMON and LUMPY under different levels of coverage and number of transferred
segments in one HGT event. a All �RA are positive and �RA decreases as coverage increases. b demonstrates that under different complexity of the
HGT event, RALEMON is better than RALUMPY . c gives an example of one HGT event containing the different number of transferred segments. d
compares Reconstruction Accuracy across different levels of coverage. e demonstrates that at different coverage level, LEMON has higher RA than
LUMPY under different complexity of HGT event
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Fig. 6 Comparison of local strains reconstructed by LEMON and LUMPY at 5X and 30X coverage levels. The true local strain contains two HGT events
A and B. Each HGT event has five transferred segments. +/- denotes the orientation of the segment. At 5X, LEMON detects one transferred segment
Green -D6, while LUMPY fails to detect anyone transferred segment. At 30X, LEMON detects all transferred segment and has reconstructed the same
structure as the true local strain, while LUMPY fails to detect Red +D1

HGT event has five transferred segments. +/- in each
segment represents the forward/reverse direction of the
segment. At 5X, LEMON detects one transferred segment
Green -D6 and the RA is 0.6087, while LUMPY fails to
detect anyone transferred segment and the RA is 0.5238.
At 30X, LEMON detects all transferred segment and the
RA is 1.0, which means LEMON has reconstructed the
same structure as the true local strain, while LUMPY
fails to detect Red +D1 and the RA is 0.9565. Therefore,
LEMON could detect more transferred segments than
LUMPY and reconstruct more accurate strains across
different coverage levels.

Highly complex HGT structures do exist in real
metagenomic data
We applied LEMON on a recently released metagenomic
dataset [29] to reconstruct local strains containing HGT
events. Some reconstructed local strains have complex
HGT events, such as the reconstructed local strain of
NZ_DS990133.1 in sample F-5 as shown in Fig. 7).

As we can see from Fig. 8, segments from one donor
are not always inserted into the receptor as a whole.
Sometimes they are inserted into the receptor together
with segments from other donors. For example. Seg-
ments D1-D2-D3 and D2-D3-D4 from NZ_GG703855.1

Fig. 7 Reconstructed local strain of NZ_DS990133.1 in F-5. NZ_DS990133.1 is the receptor. NZ_GG703855.1, NZ_GG703852.1, and NZ_GG703854.1
are donors. Numbers above the receptor denote insertion positions. Numbers above donor denote the start/end positions of segments. +/-
denotes the orientation
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Fig. 8 The change of Standard Error at the origin and terminus of replication before and after HGT reconstructions. Standard error has scaled with
log10. Boxplots are scaled standard error distribution at origin and terminus. Red boxes represent results calculated based on the original reference
of receptor containing no HGT event and blue boxes represent results calculated based on the reconstructed reference of receptor containing HGT
events. Grey lines denote some reconstructed local strains have much lower Standard Error

are inserted at the position of 181,680 bp and 431,930
bp on NZ_DS990133.1 respectively. The D2-D3-D4 from
NZ_GG703855.1 together with D7 from NZ_GG703852.1
is inserted at the position of 433,142bp on the recep-
tor. And the D8 from NZ_GG703852.1 together with D9
from NZ_GG703854.1 is reverse inserted at the position
of 450,728bp on the receptor, which demonstrates the
complexity of HGT events.

Local strains reconstructed by LEMON can assist
replication timing profile restoring
We used iRep to estimate the replication timing profile of
each bacterium in metagenomics data [29]. iRep utilizes
linear regression to evaluate the coverage distribution
across the genome to determine the PTR (peak-to-trough
ratio), which is the ratio between the coverage at the origin
and terminus of replication. However, due to the limita-
tions of the reference sequence and the low sequencing
depth of most species, we typically got very few replication
timing profiles in a single metagenomics sample.

We applied iRep to evaluate two coverage distributions
for each receptor. The first coverage distribution is eval-
uated based on the original reference of the receptor
containing no HGT event. The second coverage distri-
bution is evaluated based on the reconstructed reference
of the receptor containing HGT events. According to the
two coverage distributions, we estimated two replication
timing profiles(including PTR value, predicted origin, and
terminus position) for each receptor. Since iRep utilizes

the regression method to estimate replication timing pro-
files, we use Standard Error to measure the accuracy of
the estimated replication timing profiles. Figure 8 demon-
strates the change of Standard Error at the origin and
terminus of replication before and after reconstructions,
some reconstructed local strains have much lower Stan-
dard Error, which means that LEMON help to reconstruct
strains containing HGT events with more accurate restor-
ing replication timing profile.

Verifying HGT breakpoints with gene fusion breakpoints
detected from metatranscriptome data
In order to verify the HGT breakpoints detected by
LEMON, we analyzed the IBD (Inflammatory Bowel

Table 1 Statistic table of HGT breakpoints type in strain results of
eight samples

Sample Total Non-coding Candidate gene Candidate gene

breakpoints breakpoints fusion points fusion points ratio

F-5 1024 227 228 22.3%

F-6 390 248 18 4.6%

F-7 437 261 24 5.5%

F-8 575 322 28 4.9%

F-9 230 157 11 4.8%

F-12 459 326 11 2.4%

F-14 364 243 14 3.8%

F-15 377 230 19 5.0%
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Disease) data set published by HMP (Human Microbiome
Project) [30]. In addition to metagenomic sequencing
data, some samples in this data set have corresponding
metatranscriptome sequencing data. The HGT break-
points on DNA should cause some gene fusions in RNA.
We used STAR-Fusion, the current state-of-the-art tool
in gene fusion detection, on the metatranscriptome data
to obtain gene fusion results. These results were com-
pared with the breakpoint results in the corresponding
metagenomic data obtained by LEMON and LUMPY.
Three HGT breakpoints that have close gene fusions
results within 200 bp were found among 17 pairs of
metagenomics and metatranscriptome data as illustrated
in Table 1. HGT breakpoints detected by LEMON and
LUMPY have different shift distances away from fusion
points detected by STAR-Fusion. This may validate that
some gene fusions in bacterial chromosomes are caused
by HGT.

The reads supporting the breakpoint, NZ_DS981501.1:
4185-NZ_CP015401.2:963348, are shown in Additional
file 1. The shift distance between the HGT breakpoint and
the breakpoint obtained by STAR-Fusion is 10 bps. The
shift sequence regions on the two reference sequences,
such as TAATGGTTAG and TAATGGTTCA in Addi-
tional file 1, are almost the same.

We identify 3 main reasons for discrepancies between
STAR-Fusion-detected gene fusion breakpoints and our
HGT breakpoints:

1) The results of STAR-fusion are based on STAR
aligner, while our algorithm is based on BWA. STAR
aligner and BWA employ different alignment algorithm,
giving rise to different breakpoints results;

2) Limited sequencing data. The amount of metagen-
nomics sequencing data in the IBD data set is around 5G
per sample, and the amount of metatranscriptome data
is 2G per sample. This is insufficient for the statistical
significance required for finding all the breakpoints;

3) Based on our statistics in Table 2, most of HGT
breakpoints occur in the non-coding region.

In summary, it is reasonable to find only 3 matching
breakpoints in 17 pairs of data.

Conclusions and discussion
In this paper we present LEMON, a novel HGT discov-
ery software that can detect HGT events and reconstruct
strains containing multiple HGT events with complicated
structural variation.

Using LEMON to reconstruct the sequence structure
of bacteria allows us to study the metagenomics prob-
lem from the sequence level, thus no longer subjected
to the comparison of abundance. For example, since
HGT is the fundamental mechanism for the spread of
antibiotic resistance in bacteria, by utilizing LEMON
we could detect transferred Antibiotic Resistance Genes
(ARG)[31], determine the corresponding donors and
receptors, and reconstruct strains of receptors, which har-
bor the transferred ARG. Therefore, we could get a better
understanding of the transfer mechanism of ARG among
bacteria.

However, as the amount of sequencing data is generally
insufficient for current metagenomics analysis, challenges
remain in identifying the HGTs sensitively and accu-
rately. This results in several shortcomings in LEMON.
First, LEMON remains weak in finding HGT between
the sequences that do not exist in the reference genome.
Second, because we only consider the reads of unique
mapping, the HGT on the repeat region cannot be identi-
fied.

At present, our reference set only contains the genome
of bacteria. However, human gut microbiome also con-
tains other microorganisms such as fungi and viruses.
Therefore, a reference library that contains sequences
of bacterial, viral and fungal more completely would be
highly desirable for HGT analysis of the microbiome.

Table 2 Detail on the breakpoints of three gene fusion results which have close HGT breakpoints (HGT breakpoints located in 200 bp
upstream or downstream around gene fusion points)

Sample H4009C2 C3003C3 C3003C3

Upstream NZ_GG703852.1 NZ_ACEP01000119.1 NZ_DS981501.1

Downstream NZ_JRNC01000070.1 NZ_ACEP01000074.1 NZ_CP015401.2

Upstream breakpoint

HGT 751372 25274 4185

LUMPY 751114 25275 4220

STAR-Fusion 751131 25282 4195

Downstream breakpoint

HGT 199 27544 963348

LUMPY 127 27558 963349

STAR-Fusion 223 27588 963357

Upstream gene name NZ_GG703852.1_gene2906 NZ_ACEP01000074.1_gene1544 NZ_DS981501.1_gene822

Downstream gene name NZ_JRNC01000070.1_gene2118 NZ_ACEP01000119.1_gene553 NZ_CP015401.2_gene767
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Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3301-8.

Additional file 1: Detailed reads mapping result at HGT breakpoints
NZ_DS981501.1:4185 - NZ_CP015401.2:963348. Top-left is upstream
genome; top-right is downstream genome. STAR-Fusion determined
genes around gene fusion points are annotated with border bar. Red lines
represent breakpoints detected from metagenomics data with HGT
algorithm. Blue lines represent breakpoints detected from
metatranscriptome data with STAR-Fusion. In red rectangle, top sequence
with base name is local strain constructed with HGT breakpoints
information, and other color bars are metagenomics reads support
breakpoints. In blue rectangle, top sequence with base name is local strain
constructed with gene fusion breakpoints, other color bars are
metatranscriptome reads support those breakpoints.
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