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I-Impute: a self-consistent method to
impute single cell RNA sequencing data
Xikang Feng1,2†, Lingxi Chen2†, Zishuai Wang2 and Shuai Cheng Li2,3*
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Abstract

Background: Single-cell RNA-sequencing (scRNA-seq) is becoming indispensable in the study of cell-specific
transcriptomes. However, in scRNA-seq techniques, only a small fraction of the genes are captured due to “dropout”
events. These dropout events require intensive treatment when analyzing scRNA-seq data. For example, imputation
tools have been proposed to estimate dropout events and de-noise data. The performance of these imputation tools
are often evaluated, or fine-tuned, using various clustering criteria based on ground-truth cell subgroup labels. This
limits their effectiveness in the cases where we lack cell subgroup knowledge. We consider an alternative strategy
which requires the imputation to follow a “self-consistency” principle; that is, the imputation process is to refine its
results until there is no internal inconsistency or dropouts from the data.

Results: We propose the use of “self-consistency” as a main criteria in performing imputation. To demonstrate this
principle we devised I-Impute, a “self-consistent” method, to impute scRNA-seq data. I-Impute optimizes continuous
similarities and dropout probabilities, in iterative refinements until a self-consistent imputation is reached. On the in
silico data sets, I-Impute exhibited the highest Pearson correlations for different dropout rates consistently compared
with the state-of-art methods SAVER and scImpute. Furthermore, we collected three wetlab datasets, mouse bladder
cells dataset, embryonic stem cells dataset, and aortic leukocyte cells dataset, to evaluate the tools. I-Impute exhibited
feasible cell subpopulation discovery efficacy on all the three datasets. It achieves the highest clustering accuracy
compared with SAVER and scImpute.

Conclusions: A strategy based on “self-consistency”, captured through our method, I-Impute, gave imputation
results better than the state-of-the-art tools. Source code of I-Impute can be accessed at https://github.com/
xikanfeng2/I-Impute.
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Background
Single-cell RNA-sequencing (scRNA-seq) is becoming
indispensable in studying the landscapes of cell-specific
transcriptomes [1]. It demonstrates robust efficacy in cap-
turing transcriptome-wide cell-to-cell heterogeneity with
high resolution [2�5].Withmeta information such as time
series or patient histology, scRNA-seq has the potential
to decipher the underlying patterns in cell cycles [6�8],
complex diseases [9�11], and cancers [8, 12�16].
As with other sequencing techniques, scRNA-seq pro-

duces a count matrix which captures expression profiles,
with genes as rows, cells as columns, and the gene counts
as the matrix elements. scRNA-seq only captures a small
fraction of the genes due to �dropout� events. That is, it
produces a zero-inflated count matrix where only about
10% entries are non-zero values [17]. This is mainly due
to the missing of truly expressed transcripts from some
cells during sequencing. The dropout rate is protocol-
dependent [18]. When analyzing scRNA-seq data, the
excess zero counts from dropout events needs to be reme-
died. Otherwise, the zero count distribution from differ-
ent protocols may lead to diverging potency, which will
affect downstream analyses [18], such as clustering, cell
type recognition, dimension reduction, differential gene
expression analysis, identification of cell specific genes
and reconstruction of differentiation trajectory on zero-
inflated single-cell gene expression data [18]. The correct-
ness of all these analyses are contingent on the correctness
of the expression profile.
As a remedy, downstream scRNA-seq-based analyses

such as clustering, cell type recognition, and dimension
reduction, can be adapted to implicitly incorporate con-
siderations for dropout events [19�22]. On the other
hand, dropout events can be treated prior to downstream
analysis with scRNA-seq imputation tools. Two such lead-
ing tools are SAVER and scImpute. SAVER [23] imputes
by borrowing information across genes using a Bayesian
approach which estimates the expression levels. It aims to
reduce meaningless biological variation and retain valu-
able biological variation. One caveat is that SAVER would
unfairly adjust all gene expression levels including the
actual non-expression of genes, hence possibly interject
new biases and abolish real biological meanings. scIm-
pute [18] is designed to first identify dropout values
with Gamma-Normal mixture model, and then impute
the dropout events by borrowing information from sim-
ilar cells, with the expression level of un-dropout events
unchanged. It automatically excludes the outlier cells and
their gene information, which are likely to influence the
original imputation values. While scImpute is able to
avoid the problem which SAVER faces, it is not good with
extremely sparse datasets.
On in silico data where the ground truth counts are

known, the root mean square error (RMSE) between

imputed and ground truth entries is the most common
metrics for imputation evaluation [24]. For wetlab data
sets, the ground truth counts for missing events are
unknown. One common practice is to randomly remove
non-zeros entries and employ an imputation tool to
impute these removed entries. Then, the RMSE for the
removed entries is calculated as a criterion to evaluate
the performance of the imputation [24, 25]. Another com-
mon practice is to implicitly validate imputation efficacy
by checking whether the imputation improves the down-
stream analysis result. This check, on the other hand, typ-
ically requires additional knowledge. For instance, clus-
tering measurements such as adjusted Rand index (ARI),
normalized mutual information (NMI), silhouette width
(SW), and within-cluster sum of squares are commonly
adopted for scRNA-seq imputation evaluation [18, 26],
but these evaluations all require the true cluster labels,
which are often hard to obtain.
As an explicit measurement, imputation consistency has

been discussed in several studies. Buuren et al. [27] stated
that the imputed entries should remain internal homoge-
neous to the non-missing data. Liang et al. adopts consis-
tent estimate after imputation step for high-dimensional
data [28]. Here, we propose a new interpretation for impu-
tation consistency. As a reliable imputation tool should
assume its output contains no dropout or errors. We
want the imputation tool to be consistent in its output:
If we are to feed the output to the imputation tool again
after eliminating a number of entries, the tool should be
able to reproduce these entries. We refer this property as
self-consistency.
Therefore, in this study, to study the effects of the new

criterion, we developed a self-consistent method called
I-Impute for scRNA-seq data imputation. We compared
I-Impute with the state-of-the-art imputation tools, by
evaluating their imputation performance as well as their
self-consistency. On the in silico data sets, I-Impute exhib-
ited consistently the highest Pearson correlations for dif-
ferent dropout rates compared to SAVER and scImpute.
Furthermore, several discrete cell subpopulations have
been reported in scRNA-Seq data collected from the wet
lab; the identification of subpopulations of cells is cru-
cial [29]. Here, we collected three wetlab datasets, mouse
bladder cells dataset, embryonic stem (ES) cells dataset,
and aortic leukocyte cells dataset to evaluate the tools.
I-Impute exhibited feasible cell subpopulation discovery
efficacy on all the three datasets. It achieves the highest
clustering accuracy compared to SAVER and scImpute.

Results
Evaluating the self-consistency of existing imputation
tools in synthetic data
To evaluate the imputation tools, we applied the R pack-
age Splatter [30] to generate scRNA-seq reads count data.
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Table 1 Self-consistency on synthetic data. NA denotes not
applicable. � = 0.1

SAVER scImpute I-Impute

88.45% dropout 0.5613 7.3460 0.0936

Self-consistent (< � ) x x �

63.29% dropout 1.0245 0.2392 0.0806

Self-consistent (< � ) x x �

45.16% dropout 1.3561 0.2677 0.0381

Self-consistent (< � ) x x �

We simulated 150 cells of three groups, each with 2,000
genes. Then we generated three sparse matrices by setting
the dropout rates as 88.45%, 63.29%, and 45.16%; and their
corresponding zero rates are 90.87%, 70.98%, and 56.65%,
respectively.
We first validated whether the existing imputation tools

are self-consistent. We consider the imputation process
as a complex function f : x � x that maps the zero-
inflated matrix into an output matrix of the same shape.
We say that f is self-consistent if and only if the root mean
square error (RMSE) between x and f (x) is less than a
pre-determined threshold � , that is, ||x � f (x)||2 � � .
The results are shown in Table 1. We found that SAVER
and scImpute are not self-consistent. scImpute has RMSE
values of 7.346 at 88.45% dropout data, 0.2392 at 63.29%
dropout data, and 0.2677 at 45.16% dropout data. For
these data sets, SAVER has RMSE value of 0.5613, 1.0245,

and 1.3561 respectively. Nevertheless, when ground truth
group labels are incorporated, traditional evaluation met-
rics show SAVER to outperformed scImpute with respect
to adjusted Rand index (ARI), normalized mutual infor-
mation (NMI), and silhouette width (SW) (see Additional
file 1, Table S1).
Our tool, I-Impute, is constructed on both the princi-

ple of self-consistency as well as to optimizing the existing
imputation metrics (ARI, NMI, and SW). As illustrated
in Fig. 1a, I-Impute first calls an internal subroutine
(called C-Impute), which uses continuous similarities and
dropout probabilities to infer missing entries. Then, I-
Impute invokes SAVER as a subroutine to preprocess the
data. Finally, it deploys C-Impute iteratively on the pro-
cessed data (see Fig. 1b). As illustrated in Additional file 1,
Fig. S1, after some number of iterations, the RMSE of I-
Impute approaches to below 0.1, which is much smaller
than SAVER and scImpute. That is, assume � = 0.1,
the imputed result converges to a self-consistent matrix,
with RMSE values of 0.0936, 0.0806, and 0.0381 in three
synthetic datasets, respectively (see Table 1).

I-Impute recovers gene expression affected by dropouts in
synthetic data
To validate the performance of I-Impute, we plotted the
heatmap of the raw matrix, the 88.45% dropout matrix,
and the imputed matrices, respectively (see Fig. 2a-f ). I-
Impute�s output are closest to the raw matrices, compared
to SAVER, scImpute, and C-Impute. As illustrated in

Fig. 1 Illustration of I-Impute architecture
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Fig. 2 Imputation performance on synthetic data. a-f Heatmap plots. Blue, green, and red tiles represent different cell groups g-j Scatter plots,
Pearson correlation between ground-truth entries and imputed values are calculated

Fig. 2g, SAVER failed in reproducing many entries in the
raw matrices, leading to the lowest Pearson correlation
0.58 between its output and the ground truth. scImpute
and C-Impute changed some highly expressed elements
into zero, hence introducing new bias after imputation
(see Fig. 2h-i). With no extreme pull-down or pull-up
prediction, I-Impute exhibited the most robust recovery
power, with the highest Pearson correlation 0.78 (see
Fig. 2j). On data with 63.29% and 45.16% dropout rate, I-
Impute also gave the highest Pearson correlation of 0.90
and 0.94, respectively (see Additional file 1, Table S4).

The t-SNE embedding plots of the raw matrix, 88.45%
dropout matrix, and recovered matrices show that
SAVER, C-Impute, and I-Impute recover the missing
entries, while preserving cell subgroups structures well
(see Fig. 3a-f ). Silhouette width (SW) further validated
that the in-group similarity and out-group separation
were enhanced after the imputation by SAVER, C-
Impute, and I-Impute. That is, the average silhouette value
increased from 0.0862 (dropout data) to 0.1075 (SAVER),
0.1705 (C-Impute), and 0.2429 (I-Impute), respectively
(see Additional file 1, Table S1). Figure 3g demonstrates

Fig. 3 Imputation performance on synthetic data. a-f t-SNE plots g evaluation metrics
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that I-Impute achieves the most noticeable improvement,
while scImpute illustrates lower SW values than dropout
data. Next, we applied hierarchical clustering into all
matrices, and computed the adjusted Rand index (ARI)
and normalizedmutual information (NMI) to evaluate the
clustering accuracy. ARI and NMI measure the overlap
between the inferred groups and ground-truth clusters;
a score of 0 implies random labeling while 1 indicates
perfect inference. In Fig. 3g, I-Impute outperforms all
other tools and exhibits the best sub-population iden-
tification strength, with the highest clustering accuracy
(ARI: 0.8721, NMI: 0.8521, see Additional file 1, Table S1).
Experiments on data sets of 63.2% and 45.16% dropout
rate also proved that I-Impute produced the best recov-
ered matrices; with ARI 1.0, NMI 1.0, SW 0.3908 for
63.2% dropout rate, and ARI 0.9801, NMI 0.9710, and
SW 0.4123 for 45.16% dropout rate (see Additional file 1,
Table S2-S3).
Overall, the synthetic experiment demonstrates that by

incorporating C-Impute to refine the SAVER processed
data iteratively, I-Impute is able to mitigate the incon-
sistency in SAVER�s result and this resulted in improved
imputation.

I-Impute promotes cell subpopulation identification in real
data sets
To examine the effects of I-Impute on the identifi-
cation of cell sub-populations, we performed tests on
three real scRNA-Seq datasets. The first test involves a
dataset of mouse Bladder cells which contains 162 cells
of three cell types. Due to dropout events, 73.5% of
the read counts in the raw count matrix are zeros. We
evaluated the imputation power by reviewing the tSNE
embedding result and silhouette width (SW). ScImpute
mixes part of Unknown-type cells (purple dots) with
the Fibroblasts-1 cells (blue dots) and Fibroblasts-2 cells
(yellow dots); SAVER, C-Impute, and I-Impute distin-
guish the Unknown-type cells from Fibroblasts-1 cells and
Fibroblasts-2 cells well. Compared with raw and other
imputed data, I-Impute produced the most compact clus-
ters with highest silhouette width of 0.1758 (Fig. 4a). We
then compared the hierarchical clustering accuracy, ARI
and NMI. Both measurements show that with 0.6054 ARI
and 0.7892 NMI, I-Impute resulted in the best clustering
(ARI:0.1937, NMI:0.45), compared to those based on the
imputations by SAVER (ARI:0.5253, NMI:0.7085), scIm-
pute (ARI:0.1937, NMI:0.45), or C-Impute (ARI:0.1664,
NMI:0.4317) (Fig. 4a, Additional file 1, Table S5).
We next tested the tools on a mouse embryonic stem

(ES) cells dataset. This dataset contains 2717 cells of four
cell types (mouse ES cells sample 1, mouse ES cells LIF
2 days, mouse ES cells LIF 4 days and mouse ES cells
LIF 7 days). Due to the high running time of scImpute
on large cells dataset, we randomly selected 200 cells

and no sub-populations and genes were excluded dur-
ing this process. Due to dropout events, 67.0% of read
counts in the raw count matrix are zeros. Figure 4b shows
that SAVER and I-Impute achieved overwhelmingly bet-
ter imputation power than other tools. In the 2D t-SNE
embedding space, the results from SAVER and I-Impute
both separate the 2 days cells (the yellow dot) from the
4 days cells (the green dots) and the 7 days cells (the
blue dots) well. From the Silhouette width, adjusted Rand
index, and normalized mutual information, we found that
I-Impute (ARI:0.7047, NMI:0.7444, SW:0.2275) produced
a tighter and more accurate in-cluster structure than
SAVER (ARI:0.692, NMI:0.7329, SW:0.2235)(Additional
file 1, Table S6). Hence I-Impute was able to allow iden-
tification of the cell sub-populations in spite of the 67.0%
missing rate.
Finally, we performed test with a mouse Aortic Leuko-

cyte cells dataset. This dataset contains 378 cells of six
cell types (B cells, T cells, T memory cells, Macrophages,
Nuocytes, andNeutrophils). Due to dropout events, 91.2%
of read counts in the raw count matrix are zeros. Both
SAVER and I-Impute grouped the T memory cells (the
yellow dots) into big cluster, while in raw data and other
imputed matrices, T memory cells are separated into dif-
ferent clusters (see Fig. 4c). In this test, I-Impute gave
a silhouette width of 0.0711, which is poorer than the
result from SAVER. Nevertheless, I-Impute outperformed
all other tools in hierarchical clustering tasks with the
highest ARI (0.522) and NMI (0.7728) (Additional file 1,
Table S7).

Discussion
In this paper, we introduced I-Impute, which is designed
to impute scRNA missing entries iteratively. Experiments
using synthetic and real data demonstrated I-Impute to be
particularly suited for cell subpopulation discovery.
There are some advantages of I-Impute compared with

scImpute and SAVER. First, I-Impute produces results
which will be treated consistently when they are given
back as input, and the imputed matrix are of tighter hier-
archical structure. Second, scImpute requires the user to
decide the cell groups number K and assign cells in the
same group equal weights during imputation, whereas I-
Impute does not require such a hyper-parameter K but
instead builds a continuous affinity matrix by leveraging
on the Gaussian kernel. Last but not least, Lasso regres-
sion makes unimportant weights zero, which can help to
filter the distant cells for the regression.
Concerning the hyper-parameter pruning, the parame-

ter t denotes the threshold of dropout probabilities. We
have conducted experiments to guide the pruning. The
result in Additional file 1, Fig. S2 suggests that the value
of parameter t should not be too small, and t = 0.5 is
adequate as the default setting.
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Fig. 4 Imputation performance on real datasets. a-c t-SNE plots and evaluation metrics for mouse bladder cells, embryonicstem cells, and aortic
leukocyte cells, respectively
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Conclusions
Imputation is an essential step in the use of scRNA-seq.
In this work we introduced an imputation criterion called
self-consistency and demonstrated the effectiveness of
this criterion with an iterative imputation tool called I-
Impute. Experiments on simulation data and real data sets
showed I-Impute to be highly feasible in imputation and
in the discovery of cell sub-population.

Methods
C-Impute
I-Impute utilizes a subroutine called C-Impute, which per-
forms imputation with an objective function based on
continuous similarity and Lasso penalty (see Fig. 1a). The
following describes this subroutine.

Data prepossessing

The input of C-Impute is a count matrix �XC � M × Ntotal
which contains rows as genes and columns as cells, where
M andNtotal represent the total number of genes and cells
correspondingly. The dropout values are replaced by zero
counts.
First, C-Impute performs normalization, dimension

reduction, and outlier removal as in scImpute [18]. This
results in a matrix X � M×N and Z � K ×N , where K is
the reduced dimensionality ofmetagenes,N is the number
of remained cells.

Affinity matrix constructing
From Z, a cell affinity matrix A � N ×N is computed with
Euclidean distance and Gaussian Kernel:

Dist(i, j) =
�
�
�
�
�
�Z�

i � Z�
j

�
�
�
�
�
�
2

F
(1)

�i = Dist(i, k) (2)

Aij =

�

exp
�Dist(i,j)

2�2i , Dist(i, j) � �i,
0, Dist(i, j) > �i.

(3)

where i, j represent two different cell indices, Z�
i and Z�

j
indicate the principle components of i-th and j-th cell
respectively, || • ||F is the Frobenius norm. For the i-th
cell, the kernel width will be set to the distance between it
and its n-nearest neighbor, cell k, which stands for the cell
whose distance to cell i is n-th smallest in all other cells,
where n is a hyper-parameter.

Identification of dropout values and calculating dropout rate
With preprocessed gene expression matrix X, we utilize
a statistical model to infer which entries are influenced
by the dropout effects. Instead of treating all zero values
as missing entries, we use the Gamma-Normal mixture
model to learn whether a zero observation originates from
dropout or not.We use the Normal distribution to present

the actual gene expression level and Gamma distribu-
tion to take the dropout events into account. Since the
preprocessed matrix X is no longer of integral values,
we cannot adopt zero-inflated negative binomial (ZINB)
distribution.
For the i-th gene and its observed value x in prepos-

sessed gene profiling Xi, the Gamma-Normal mixture
model will be:
fGamma-Normal

�
x; � i, � i, � i,µ i, � i

�

=� iGamma
�
x; � i, � i

�
+ (1 � � i)Normal

�
x;µ i, � i

� (4)

where � i is the dropout rate of gene i, � i and � i is the
shape and rate parameter of Gamma distribution respec-
tively, µ i and � i are the mean and standard deviation of
Normal distribution. The estimated model parameters �� ,
�� , �� , �µ , and �� are obtained by Expectation-Maximization
(EM) algorithm. Then, we can calculate the dropout prob-
ability matrix D � M × N .

Dij =
� iGamma

�
Xij; � i, � i

�

fGamma-Normal
�
Xij; � i, � i, � i,µ i, � i

� (5)

This mixture model enables the identification of
whether an observed value is a dropout value or not, since
a zero value can be either caused by a technical error or
may reflect the actual expression value. If a gene has high
expression and low variation in most of its similar cells,
a zero count will have high dropout probability and more
likely to be a dropout value; otherwise, the zero value may
exhibit real biological variability [18].

Imputation of dropout values
To impute the gene expression levels, we first define
a hyper-parameter t which is used as the threshold to
determine if Xij is a dropout event. An entry of dropout
probability less than t is considered a real observation, in
which case its value is retained. Otherwise, while values
with dropout probability higher than t will be replaced
by imputation result. We perform imputation by lin-
ear regression weighted by dropout probability and cell
affinity.

�Xij =

�
Xij,Dij < t,��

1 � D�
flj

�
�

�
Ajflj � X�

j

��
B�
j ,Dij � t. (6)

where D�
j and X�

j are the j-th column of D and X respec-
tively. The � operator is the Hadamard product which
follows (P � Q)ij = PijQij. flj denotes all indices except
index j, thus D�

flj and X�
flj denotes the sub-matrix of D and

X which contains all cells except the j-th cell, respectively.
Ajflj stores the pairwise affinity between j-th cell and all
other cells; X�

flj is a sub-matrix of X which contains all cells
except the j-th cell. � operator represents the vector and
matrix multiplication, e.g. (p � Q)ij = piQij. Leveraging
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�
1 � D�

j

�
� X�

j as target indicates that genes with high
dropout probability in j-th cell will not contribute to opti-
mization. Furthermore, the multiplication of

�
1 � D�

flj

�

and Ajflj ensures that the information is only borrowed
from the trusted genes with low dropout probabilities
in the similar cells. Non-negative weights B�

j are extra
contributions of all other cells learned from regression.
For j-th cell, the objective is:

min
B�
j

N�

j=1

||
�
1 � D�

j

�
� X�

j

�
	�

1 � D�
flj

�
�

�
Ajflj � X�

j

�

B�
j ||2F

+ �
�
�
�
�
�
�B�

j

�
�
�
�
�
�
1
,

subject to B�
j � 0

(7)

L1 is applied to avoid over-fitting and further ensure that
the imputation borrow information from the cell�s most
similar neighbors.
Assume y � RM =

�
1 � D�

j

�
� X�

j ,� � RN = B�
j ,X �

RM×N =
�
1 � D�

flj

�
�

�
Ajflj � X�

j

�
, for each j-th cell we can

simplify the objective to non-negative least squares lasso
regression min�

�
�
�
�y � X�

�
�
�
�2
2 + � ||�||1 ,� � 0, and solve it

by coordinate descent [31].

I-Impute
As mentioned, I-Impute performs a self-consistent impu-
tation on scRNA-seq data. The method is as illustrated
in Fig. 1b. I-Impute utilizes C-Impute to iteratively refine
SAVER processed data. After a few iterations, the result
converges to a self-consistent matrix (< � ) and is given as
I-Impute�s output.
We define self-consistency of a functional mapping f :

x � x given by input data X � M × N :

Xoutput = f (X)

self-consistency (f ;X) =

�
�
�
�Xoutput � f

�
Xoutput

� ��
�
�2
F

M × N
self-consistency (f ;X) < � � f is self-consistent

(8)

Evaluation metrics
Adjusted rand index and normalized mutual information
The adjusted Rand index (ARI) [32] and normalized
mutual information (NMI) [33] are adopted as clustering
accuracy. They measure the similarity between a clus-
tering result and the actual clusters. A value close to 0
indicates random labeling or no mutual information, and
a value of 1 demonstrates 100% consistency between the
clustering and the actual clusters.

Silhouette width
The silhouette width (SW) measures the similarity of a
sample to its class compared to other categories [34]. It
ranges from -1 to 1. A higher silhouette value suggests
a more appropriate clustering. A silhouette value near 0
indicates overlapping clusters and a negative value indi-
cates that the clustering has been performed incorrectly.
We adopted the silhouette width to evaluate the model�s
imputation power. We used the ground-truth subtype
classes as the input cluster labels.

Simulation and benchmark settings
Splatter are used to generate simulated scRNA-seq data.
The parameters used for our simulation dataset are
nGroups=3, nGenes=2000, batchCells=150, seeds=42,
dropout.type=�experiment�, dropout.shape=-1 and
dropout.mid=2, 3, 5 for three different dropout rate data.
SAVER and scImpute are the state-of-the-art tools

which I-Impute is compared against. For the SAVER R
package, we used the �saver� function with the param-
eters ncores=12 and estimates.only=TRUE to perform
the imputation tasks. The parameters for scImpute are
drop_thre=0.5, ncores=10, Kclusters=(number of true
clusters in input data).
On synthetic data, I-Impute configuration is n=40, nor-

malize=False, and iteration=True. On real data sets, I-
Impute configuration is n=40, and iteration=True when
tested with the mouse Bladder cell dataset and ES cell
dataset, and is n=20, and iteration=True when tested with
the mouse Aortic Leukocyte cell dataset.
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