Original Article

Grain refinement mechanism of soft-magnetic alloys with nanocrystals embedded in amorphous matrix

Tao Liu a,b,c, Hua Zhang a,c, Fengyu Kong d,e,* , Anding Wang d,* , Yaqi Dong b, Aina He b,* , Xinmin Wang b, Hongwei Ni a,c, Yong Yang d

a The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
b Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of
Sciences, Ningbo 315201, China
c Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology,
Wuhan 430081, China
d Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong
Kong SAR, China
e School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China

A R T I C L E I N F O

Article history:
Received 5 December 2019
Accepted 25 January 2020
Available online 19 February 2020

Keywords:
Soft-magnetic alloy
Nanostructure
Grain refinement
Thermal stability

A B S T R A C T

To obtain uniform and stable nanostructure with fine α-Fe grains is very important for the wide applications of Fe-based nanocrystalline soft-magnetic alloys. In this study, the nanostructure evolution of the Fe84.75Si2.95P1.45Cu0.75 (at.%) alloy after annealing under different conditions was characterized in detail. It is found that the alloy exhibits excellent structural stability, which can maintain small α-Fe grains for a prolonged annealing time at low temperature. The increase of annealing temperature and/or annealing time will lead to the precipitation of compound phases in the intergranular amorphous interphase, which affects the α-Fe grains size greatly and determines the structural stability. The elemental mappings of the nanostructured alloys reveal that metalloid elements are enriched in the intergranular amorphous interphase, wrapping around α-Fe grains. The grain refinement and nanostructure stability of these alloys are derived from the shielding and soft-impingement effects of the core-shell like structure. The nanostructure stability is lost with the precipitation of compound phases in the intergranular amorphous interphase, owing to the break-down of the shielding layer, which results in the rapid coarsening of α-Fe grains by coalescence.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Soft-magnetic alloys are an important electronic materials, which have been playing a crucial role in power generation, transformation and conversion [1]. Among the soft-magnetic materials, Fe-based nanocrystalline alloys have aroused tremendous interest in both industry and academia since developed [2]. These alloys are structurally characterized by nano-sized α-Fe grains in amorphous matrix and functionally characterized by high saturation magnetization (B_s) with unparalleled magnetic softness [3]. In pursuit of higher B_s, a class of high B_s nanocrystalline alloys (HBNAs) with high Fe content (above 82 at.%) and no large atoms (such as Nb, Zr, Mo etc.) were successfully developed [4-6]. These alloys exhibit both high B_s above 1.80T and excellent soft-magnetic properties as well as low materials cost [7], which are ideal candidates to be used as core materials in transformers, motors, sensors and electric vehicles, for the long-term targets of stronger, lighter, and higher efficiency devices [8].

For the nanocrystalline soft-magnetic alloys, the key is to control the annealing process [9] such that nano-sized α-Fe grains precipitate in amorphous matrix [3]. The correlation between nanostructure and soft-magnetic properties of Fe-based nanocrystalline alloys has been successfully established in random anisotropy model [10,11], that the uniform distribution of fine α-Fe grains in amorphous matrix is conducive to achieving good magnetic softness. Therefore, to unveil the grain refinement mechanism of Fe-based nanocrystalline alloys is helpful to obtain fine nanostructure and achieve excellent soft-magnetic properties. The grain refinement mechanism of Fe-based nanocrystalline alloys has been extensively investigated. As reported in Finemet-type alloys (FeSiBNbCu), the crystallization process is well accepted that Cu-clusters precipitate prior to α-Fe grains at the early stage of annealing process, which can be served as heterogeneous nucleation sites to promote the formation of α-Fe grains [12]. The large atom Nb will hinder the excessive grain growth of α-Fe grains [13] and enable the excellent thermal stability of nanostructure and soft-magnetic properties. However, the HBNAs often suffer from harsh and stringent annealing process. As reported in FeBCu [14] and FeSiBPCu [15] alloys, high heating rate annealing is essential for obtaining small α-Fe grains and good magnetic softness. And for the FeBCCu [16] and FePCCu [17] alloys, the annealing time should be controlled within 3 min in order to avoid any structural coarsening and property degradation. According to Refs. [15,18], the formation of nanocrystals in HBNAs is a competition driven nanocrystallization process, but this is a phenomenological model based on experimental results. The grain refinement mechanism of nanocrystalline soft-magnetic alloys need to be further investigated, and the nanostructure stabilization mechanism is still not clear yet.

In our previous research [19], we developed the Fe_{84.75}Si_{2}B_{2}P_{0.5}Cu_{0.75} (at.%) alloy with excellent magnetic properties, and found that the alloy exhibit good thermal stability. Further in this study, the nanostructure of the developed alloy after annealing at different temperature for different time were characterized in detail, to withdraw a comprehensive nanostructure evolution process and provide technical guidance for the controllable preparation of nanocrystalline soft-magnetic alloys. The thermal analyses and elemental mappings of these nanostructured alloys were then conducted, to unveil the grain refinement mechanism of nanocrystalline soft-magnetic alloys. In addition, the nanostructure of the alloy after precipitation of compound phases in residual amorphous matrix and its effects on the further growth of α-Fe grains were also studied, to clarify the nanostructure stabilization mechanism of Fe-based nanocrystalline alloys. These investigations will provide experimental references and theoretical guidance for the development of HBNAs with enhanced thermal stability, which paves the way for the large-scale production of high performance soft-magnetic alloys.

Fig. 1 - (a) Illustration of the annealing temperature window for the nanocrystalline soft-magnetic alloys; Inset sketches the nanocrystalline-amorphous embedded nanostructure; (b) The identified precipitation phases and calculated grains size (D) according to the XRD patterns of Fe_{84.75}Si_{2}B_{2}P_{0.5}Cu_{0.75} (at.%) alloy after annealing under different conditions.
Fig. 2 – TEM bright field images of the Fe₈₄.₇₅Si₂B₃P₃C₀.₅Cu₀.₇₅ (at.%) alloy after annealing at 460 °C for (a) 2 min; (b) 16 min; and (c) 64 min, respectively; Inset the corresponding selected area electron diffraction (SAED) patterns; (d) High resolution TEM image of a coarse grain as indicated in Fig. 3(c), and the arrows indicate the boundaries between the sub-grains.

2. Experimental

The master alloy Fe₈₄.₇₅Si₂B₃P₃C₀.₅Cu₀.₇₅ (at.%) was prepared by induction melting. Pure elements of Fe (99.99 wt.%), Si (99.99 wt.%), B (99.9 wt.%), Cu (99.99 wt.%), and pre-alloy of Fe₃P and Fe-3.6% C were accurately weighed according to the composition, and melt under an Ar atmosphere after a high vacuum of about 5 × 10⁻³ Pa. Ribbons about 1 mm wide and 24 μm thick were prepared by using the single-roller melt-spinning method. Isothermal annealing was carried out in a high vacuum tube furnace. The as-quenched ribbon samples were placed in a high vacuum quartz tube and then inserted into a preheated tube furnace to be annealed at different temperature (380–540 °C) for different time (1–120 min) to prepare nanostructured samples. The structure and precipitation phases of the as-quenched and annealed ribbon samples were first identified via X-ray diffraction (XRD, Bruker D8 Advance) with Cu-Kα radiation, and the grain size (D) was calculated according to Scherrer’s equation [20,21]. The nanostructure and elemental mappings of the prepared samples were further characterized via high-resolution transmission electron microscopy (TEM, Talos F200), and the TEM samples were prepared via ion milling (Gatan695). Thermal analyses were performed based on the differential scanning calorimetry (DSC, NETZSCH 404C) results of the as-quenched and annealed samples at a heating rate of 40 °C/min.

3. Results

Ribbon samples of the Fe₈₄.₇₅Si₂B₃P₃C₀.₅Cu₀.₇₅ (at.%) alloy were readily prepared via induction melting and single-roller melt-spinning techniques. The amorphous structure of the as-quenched ribbons was identified from the XRD results, showing as a broad peak at around 45°. Generally, the amorphous precursors are annealed between the onset crystallization temperature of α-Fe grains (Tₓ₁) and 2nd compound phases (Tₓ₂) as illustrated in Fig. 1(a). The wide temperature interval between Tₓ₁ and Tₓ₂ is beneficial for the formation of nanocrystalline-amorphous embedded nanostructure as sketched in the inset of Fig. 1(a). For the nanocrystalline soft-magnetic alloys, the isothermal annealing temperature (Tₐ) and annealing time (tₐ) both affect the grain size (D) and
volume fraction of \(\alpha\)-Fe grains (\(V_\alpha\)) greatly. To explore the optimal annealing window is crucial for achieving high \(B_H\) and low coercivity (\(H_C\)) [3]. Fig. 1(b) shows the precipitation phases and grain size of \(\alpha\)-Fe grains obtained from XRD patterns, and \(T_A\), \(T_F\) are determined from the DSC curves of the as-quenched ribbon samples. Note that it is quite difficult for the precipitation of \(\alpha\)-Fe grains after annealing below 380 ℃, and the results are not shown here. The alloys after annealing at a relatively low temperature (380–420 ℃) can retain small \(\alpha\)-Fe grains for a prolonged annealing time of 120 min. With the increase of annealing temperature \(t_A\), the stability of \(\alpha\)-Fe grains size deteriorates. This is understandable from the perspective of thermodynamics and kinetics of grain growth [23]. Obviously, the further increase of annealing temperature \(T_A\) or annealing time \(t_A\) will lead to the precipitation of 2nd phases such as Fe2B, Fe3B, Fe2P, Fe3C, which results in a sharp increase in \(\alpha\)-Fe grain size as shown in Fig. 1(b).

For further structural examination, TEM bright field images of the alloy after annealing at 460 ℃ for different time were obtained and shown in Fig. 2. After annealing for 2 min, high number density grains with the size of \(\sim 18\) nm distribute evenly in amorphous matrix as shown in Fig. 2(a). These grains are identified as BCC \(\alpha\)-Fe grains from the corresponding selected area electron diffraction (SAED) patterns. After annealing for 16 min, \(\alpha\)-Fe grains grow to \(\sim 24\) nm. The grain size observed in Fig. 2(a and b) is consistent with the calculated results from the XRD patterns in Fig. 1(b). After annealing for 64 min, non-uniform \(\alpha\)-Fe grains adjacent to each other can be observed in Fig. 2(c), and the amorphous matrix disappears. The diminishing diffused rings and other diffraction patterns in SAED patterns also indicate the disappearance of intergranular amorphous interphase and the formation of 2nd phases. Note that the coarse grains in Fig. 2(c) are seemingly to be composed of several small sub-grains. This is further confirmed with the high resolution TEM image of a coarse grain as shown in Fig. 2(d). It is clear that the coarse grain contains several small sub-grains, of which the boundaries are marked by the arrows. In other words, the witnessed grain coarsening is due to grain coalescence [24,25].

To understand the crystallization process of the Fe\(_{84.75}\)Si\(_2\)B\(_9\)P\(_3\)C\(_{0.5}\)Cu\(_{0.75}\) (at.%) alloy, DSC was performed on the as-quenched amorphous precursors and nanostructured alloys after annealing at 460 ℃ for different time. As seen in Fig. 3, two separated exothermic peaks can be easily observed for the as-quenched amorphous ribbons. Based on the results in Fig. 1(b), the first crystallization peak corresponds to the formation of \(\alpha\)-Fe grains, and the second one corresponds to the precipitation of 2nd phases such as boride, phosphide and carbide. Thus, with the increase of \(T_A\) or \(t_A\), the crystallization process of Fe-based nanocrystalline soft-magnetic alloys can be described as: amorphous \(\rightarrow\) amorphous + \(\alpha\)-Fe nano-grains \(\rightarrow\) \(\alpha\)-Fe grains + 2nd phases. For the alloy after annealing for 2 min, the first crystallization peak disappears, which suggests a high volume fraction of \(\alpha\)-Fe grains (\(V_\alpha\)) as observed in Fig. 2(a). This also delivers a strong message that the nucleation and growth of \(\alpha\)-Fe grains is ultra-fast for the studied alloys due to the fast diffusion process of HBNNs without large atoms [26]. As the first crystallization peak disappears, the second one shifts to a lower temperature, which indicates that the precipitation of \(\alpha\)-Fe grains leads to the enrichment of metalloid elements and facilitates the incubation and precipitation of 2nd phases. Notably, the DSC curve of the alloy after annealing for 8 min coincides with the alloy after annealing for 2 min, which means that the changes in nanostructure is negligible for these alloys. With the further increase of \(t_A\), the second crystallization peak shifts to lower temperature and becomes smaller, until disappears after annealing for more than 64 min, indicating the formation of 2nd phases as observed in the inset of Fig. 2(c).

The changes in the second crystallization peak is closely related to the incubation and precipitation processes of 2nd phases, and thereby, elemental mappings of these nanostructured alloy after annealing at 460 ℃ for different time were then characterized. Since small atoms B and C are unable to be detected, only the high-angle annular dark field (HAADF) images and elemental mappings of P element were shown in Fig. 4. For the alloy after annealing for 2 min, the distribution of P element is relatively uniform, as observed in Fig. 4(d). While for the alloy after annealing for 16 min, P element is obviously enriched around \(\alpha\)-Fe grains, as shown in Fig. 4(e), forming a core-shell like structure [27,28], which is the reason for the lower shift of the second crystallization peak as observed in Fig. 3. After annealing for 64 min, phosphorus compound can be easily observed in Fig. 4(f). These phosphides are mainly around \(\alpha\)-Fe grains, suggesting that the 2nd phases precipitate in the intergranular amorphous interphase.

4. Discussion

Based on the above experimental findings and analyses, we will first elucidate the formation of nanocrystals in Fe-based nanocrystalline soft-magnetic alloys. During the isothermal annealing process, the samples first keep to its amorphous structure. With the increase of \(t_A\), \(\alpha\)-Fe grains begin to precipitate in amorphous matrix, and form a uniform nanostructure with fine \(\alpha\)-Fe grains as illustrated in Fig. 5(a). The further
Fig. 4 – High-angle annular dark field (HAADF) images and elemental mappings of P element of the Fe$_{84.75}$Si$_2$B$_9$P$_3$C$_{0.5}$Cu$_{0.75}$ (at.%) alloy after annealing at 460 °C for (a) and (d) 2 min; (b) and (e) 16 min; (c) and (f) 64 min, respectively.

Fig. 5 – Illustrations of (a) formation of nanocrystals during the annealing process; (b) α-Fe grain size changes on the dependence of annealing time; Inset sketches the core-shell like structure evolution during the annealing process.

increase of t_A will lead to the precipitation of 2nd phases and coarsening of α-Fe grains as observed in Fig. 3(c and d). Thus, the optimal annealing window for the Fe-based nanocrystalline soft-magnetic alloys should be within the formation of α-Fe grains and 2nd phases, showing as the shaded area in Fig. 5(a), during which uniform nanostructure with fine α-Fe grains can be obtained. These analyses are quite consistent with the experimental results in Fig. 1(b), that the increase of T_A will narrow the optimal annealing window for obtaining fine α-Fe grains.

Next, we will unveil the grain refinement mechanism and the nanostructure stabilization mechanism of Fe-based
nanocrystalline soft-magnetic alloys. At the early stage of isothermal annealing process, α-Fe grains grow up in a very short time, as observed in Fig. 2(a), owing to the ultra-fast atomic diffusion of HBNAs without large atoms [26]. According to the kinetics of grain growth [29,30], the growth of α-Fe grains can be described as the diffusion of Fe atoms, that α-Fe grains absorb Fe atoms from the surroundings, and creates a Fe-lean inter-layer or interphase wrapping around the α-Fe grains, as observed in Fig. 4(e). The similar results have been extensively reported in HBNAs [31–33], that the metalloid elements are excluded from the α-Fe grains and enriched in the intergranular amorphous interphase, forming a core-shell like structure, which enables the high stability of the alloys [34,35]. The metalloid elements rich (or Fe-lean) layer makes the diffusion of Fe atoms difficult, and thereby hindering the excessive growth of α-Fe grains. In addition, the shielding layer around α-Fe grains will interact with each other, the soft-impingement effect [36,37] between α-Fe grains will also hinder the further growth of α-Fe grains, as sketched in Fig. 5(b). Thus, the grain refinement mechanism of HBNAs stems from the shielding and soft-impingement effects, and the nanostructure stability is closely related to the thermal stability of the shielding layer (or the intergranular amorphous interphase). As observed in Fig. 1(b) and Fig. 4(d), the precipitation of 2nd phases in the intergranular amorphous interphase will lead to the formation of coarse α-Fe grains. This is attributed to the break-down of the shielding layer, which greatly reduces the shielding and soft-impingement effects, resulting in the rapid grain growth by coalescence [24,25], as observed in Fig. 2(c) and Fig. 2(d). For the Finemet-type alloys, the large atoms Nb contributes to a sluggish diffusion process [26] and will also hinder the excessive growth of α-Fe grains [13]. And the good thermal stability of the residual amorphous interphase enables the excellent stability of the nanostructure and properties [38,39].

Finally, we will discuss the implications of this study. The systematic investigations of the formation of nanocrystals in HBNAs will provide technical guidance for the preparation of high performance soft-magnetic alloys by controlling the annealing process. In addition, the revealing of the grain refinement mechanism and nanostructure stabilization mechanism gives us an insight to enhancing the thermal stability of HBNAs. Since the grain refinement and nanostructure stability of Fe-based nanocrystalline alloys stems from the shielding and soft-impingement effects, there are two ways to increase the thermal stability of HBNAs. One is to increase the number density of α-Fe grains to enhance the soft-impingement effects. This has been confirmed in Ref. [40], by increasing the Fe content, the number density of α-Fe grains is greatly increased. As a result, the thermal stability of nanostructure and soft-magnetic properties of HBNAs improves significantly. In that sense, this is similar to the reported competition driven nanocrystallization process [15,18]. The other is to increase the thermal stability of the shielding layer (or the intergranular amorphous interphase). It is reported that the strain energy can act as driving force for ordering [41,42], and which is closely related to the width of the intergranular amorphous interlayer between the grains [43,44]. This can be an effective way to improve the thermal stability of the residual amorphous matrix or prevent the precipitation of 2nd phases in the intergranular amorphous interphase, which is very important for obtaining high performance HBNAs with excellent thermal stability, and warrants further research.

5. Conclusions

In summary, the nanostructured Fe$_{84.75}$Si$_2$B$_3$P$_3$C$_{2.15}$Cu$_{0.75}$ (at.%) alloys were obtained via induction melting and melt-spinning techniques, followed by isothermal annealing process. The nanostructure and elemental mappings of the alloys after annealing under different conditions were investigated in detail, to unveil the grain refinement mechanism and nanostructure stabilization mechanism of Fe-based nanocrystalline soft-magnetic alloys. It is found that the alloys after annealing at a relatively low temperature can retain small α-Fe grain size for a prolonged annealing time, and the metalloid elements are enriched around α-Fe grains. The grain refinement and nanostructure stability of HBNAs stems from the shielding and soft-impingement effects. With the further increase of annealing temperature and/or annealing time, 2nd phases will precipitate in the intergranular amorphous interphase, leading to the rapid coarsening of α-Fe grains by coalescence. These results will provide technical guidance for the controllable preparation of high performance HBNAs, and also pave the way for improving the thermal stability of HBNAs, which is of great significance to the large-scale production of high performance soft-magnetic alloys for a variety of industrial applications.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgement

This work was supported by the National Key Research and Development Program of China 2016YFB0300501, the National Natural Science Foundation of China Grant No. 51774217, 51601101, 51801224, the Science and Technology Service Network Initiative Grant No. KJF-STSC-YDY-220, the Zhejiang Provincial Natural Science Foundation Grant No. LQ18E010006, and the Ningbo Municipal Natural Science Foundation Grant No. 2018A610172). YY acknowledges the financial support from Research Grant Council (RGC), the Hong Kong Government, through the general research fund (GRF) with the project numbers CityU11213118 and CityU11200719.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi: https://doi.org/10.1016/j.jmrt.2020.01.093.

References

[5] Ohta M, Yoshizawa Y. Magnetic properties of nanocrystalline Fe\textsubscript{82.65}Cu\textsubscript{1.3}Si\textsubscript{1.6}B\textsubscript{16.6} alloys (x = 0–7). Appl Phys Lett 2007;91(6), 062517–3.
[12] Pradeep KG, Herzer G, Choi P, Raabe D. Atom probe tomography study of ultrahigh nanocrystallization rates in Fe\textsubscript{85}Cu\textsubscript{1}Si\textsubscript{2}B\textsubscript{8}P\textsubscript{4} melt annealed Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Nb\textsubscript{3}Cu\textsubscript{1} amorphous alloy. Acta Mater 2004;52(12):3125–9.
[14] Ohta M, Yoshizawa Y. Magnetic properties of nanocrystalline Fe\textsubscript{82.65}Cu\textsubscript{1.3}Si\textsubscript{1.6}B\textsubscript{16.6} alloys (x = 0–7). Appl Phys Lett 2007;91(6), 062517–3.
[21] Pradeep KG, Herzer G, Choi P, Raabe D. Atom probe tomography study of ultrahigh nanocrystallization rates in Fe\textsubscript{85}Cu\textsubscript{1}Si\textsubscript{2}B\textsubscript{8}P\textsubscript{4} melt annealed Fe\textsubscript{73.5}Si\textsubscript{13.5}B\textsubscript{9}Nb\textsubscript{3}Cu\textsubscript{1} amorphous alloy. Acta Mater 2004;52(12):3125–9.
[22] Liu T, Kong FY, Xie L, Wang AD, Chang CT, Wang XM, et al. Fe(Co)SiB\textsubscript{0.5}P\textsubscript{0.5} nanocrystalline alloys with high B\textsubscript{n} above 1.83 T. J Magn Magn Mater 2017;441:174–9.
