Symposium MB4: Glassy, Nanocrystalline and Other Complex Alloy Systems and Their Applications

Symposium Organizers
Mo Li, Georgia Institute of Technology
Hans Fecht, Univ of Ulm
Joseph Poon, University of Virginia
Christopher Schuh, Massachusetts Institute of Technology

MB4.10: Complex Alloy Systems IX

Session Chairs
Mo Li
Xun-Li Wang

Friday AM, December 02, 2016
Sheraton, 3rd Floor, Fairfax A

9:00 AM - *MB4.10.01
Self-Nanoscaling in Nanocomposite Magnets upon Severe Plastic Deformation

J. Ping Liu ¹

¹ University of Texas at Arlington Arlington United States

Show Abstract

9:30 AM - *MB4.10.02
Nanocrystalline CVD Diamond Coatings—Fabrication, Structure, Morphology, Properties and Applications

Peter Gluche ¹, Ralph Gretzschel ¹, Matthias Wiora ¹, Stefan Strobel ¹, Michael Mertens ², Kai Bruhne ², Hans-J. Fecht ²

¹ GFD Gesellschaft fuer Diamantprodukte mbH Ulm Germany, ² Institute of Micro and Nanomaterials Ulm University Ulm Germany

Show Abstract
10:00 AM - MB4.10.03
Visualization of Metallic Glass Casting and Determination of Respective Cooling Curves via High-Speed Infrared Thermography

Fabian Haag¹, Gueven Kurtuldu ¹, Jorg Löffler ¹

¹ Department of Materials, Laboratory of Metal Physics and Technology ETH Zurich Zurich Switzerland

Show Abstract

10:15 AM - MB4.10.04
Thermally Stable Nanocrystalline Aluminum Alloys with Extreme Strength through Grain Boundary Doping

Jason Trelewicz¹, Timothy Rupert ²

¹ Stony Brook University Stony Brook United States, ² University of California, Irvine Irvine United States

Show Abstract

10:30 AM - MB4.10.05
Stress-Induced Relaxation and Hardening in a Zr-Based Bulk Metallic Glass under Elastostatic Compression

Yi-Mei Wang ¹, Meng Zhang ¹, Lin Liu ¹

¹ State Key Laboratory of Materials Processing and Die and Mold Technology Huazhong University of Science and Technology Wuhan China

Show Abstract

10:45 AM - MB4.10.06
Fe-Co-Ni Phase Diagram Construction by Combinatorial Materials Chip Approach

Lanting Zhang ¹², Yujie Wang ¹³, Ningning Yan ⁴, Tieren Gao ⁵, Hui Xing ¹², Jindong Li ¹³, Hong Wang ¹²⁴

¹ Materials Genome Initiative Center Shanghai Jiao Tong University Shanghai China, ² School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China, ³
11:00 AM - *
Break

11:30 AM - MB4.10.07
Generating Nanoporous Au by De-Alloying Amorphous and Partially Crystallized Alloy

Eirini Maria Paschalidou 1, Gianluca Fiore 1, Annett Gebert 2, Steffen Oswald 2, Ulrike Wolff 2, Tonny Spassov 4, Lyuben Mihaylov 4, Federica Celegato 3, Federico Scaglione 1, Paola Rizzi 1, Livio Battezzati 1

1 Chemistry University of Turin Torino Italy, 2 IFW-Dresden Dresden Germany, 4 University of Sofia Sofia Bulgaria, 3 Istituto Nazionale di Ricerca Metrologica Torino Italy

Show Abstract

11:45 AM - MB4.10.08
Functional Composites by Liquid Metal Dealloying

Bernard Gaskey 1, Ian McCue 1, Jonah Erlebacher 1

1 Materials Science and Engineering Johns Hopkins University Baltimore United States

Show Abstract

12:00 PM - MB4.10.09
Direction-Specific Interaction Forces between Nanocrystals

Xin Zhang 1, Yang He 3, Zhizhang Shen 1, Maria Sushko 1, Jia Liu 2, Sebastien Kerisit 1, Langli Luo 2, Scott Mao 3, Chongmin Wang 2, James De Yoreo 1, Kevin Rosso 1

1 Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland United States, 3 Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh United States, 2 Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland United States

Show Abstract
Suppression of Crystallization in Ca-Mg-Cu Ternary Bulk Metallic Glass under Stress

Muhammad Naeem 1, Si Lan 1, Bing Wang 1, Xiaoya Wei 1, Yang Ren 2, Xun-Li Wang 1

1 Department of Physics and Materials Science City University of Hong Kong Kowloon Hong Kong, 2 Advanced Photon Source Argonne National Laboratory Argonne United States

Hide Abstract

Ca-based bulk metallic glasses (BMGs) have the lowest density compared to any other BMG group, and elastic and bulk moduli comparable to human bones which make them potential candidate for biomedical applications. They have low characteristic temperatures e.g., Tg, just above 100°C. It is crucial to investigate their crystallization behavior at high temperature and under stress to explore the stability of amorphous structure and to determine their suitability for potential applications. So far very few studies are conducted on their crystallization behaviors and there is no in-situ study. In this study, three Ca_{75-x}Mg_{25}Cu_{x} (x=18, 27 and 35) BMGs with different glass forming abilities are considered. Effect of increasing Cu concentration on the as-cast amorphous structure is explored. Crystallization kinetics of Ca_{40}Mg_{25}Cu_{35} BMG are studied under isothermal annealing above the glass transition temperature with and without load in-situ by using synchrotron high-energy x-ray diffraction. Under isothermal annealing conditions, crystallization process started right from the beginning of the experiment and its rate was quite rapid. However when compressive load was applied simultaneously while isothermally heating at the same temperature, no change in the atomic order was observed during the first ten minutes and after that there was only atomic rearrangement without any noticeable crystallization. It is suggested that stress restricted the atomic mobility, which suppressed crystallization.

Interstitial Compositionally Complex Alloys with Transformation and Twinning Induced Plasticity

Zhiming Li 1, Cem Tasan 2, Hauke Springer 1, Baptiste Gault 1, Dierk Raabe 1

1 Max-Planck-Institut für Eisenforschung Düsseldorf Germany, 2 Department of Materials Science and Engineering Massachusetts Institute of Technology Boston United States

Show Abstract