Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries

Tan, Tian; Lee, Pui-Kit; Yu, Denis Y. W.

Published in:
Journal of the Electrochemical Society

Published: 01/01/2019

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1149/2.0321903jes

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries

Tian Tan, Pui-Kit Lee, and Denis Y. W. Yu

School of Energy and Environment, City University of Hong Kong, Hong Kong

Silicon monoxide (SiO) is a promising anode material for lithium-ion batteries. However, its low initial Coulombic efficiency hinders its adoption in commercial batteries. Here, we use an electrochemical approach, depth of discharge test, to study the origin of the irreversibility in SiO electrodes. We find two contributions to the irreversible capacity of SiO, depending on the reaction products during lithiation. Carbon-coating the material improves the reversible capacity as it increases its electrical conductivity. Disproportionation is an effective way to decrease irreversibility in the initial cycle with the formation of large cluster of SiO2 which is electrochemically inactive. Though, the reversible capacity is reduced.

Material characterizations.—The morphology and structure of the materials were studied by scanning electron microscopy (SEM, Philips XL30FEG). The crystal structure of powders was analyzed by X-ray powder diffraction (XRD, D2 Phasar Bruker) in the 2θ range from 10 to 80° with an acquisition rate of 0.05° per second with Cu Kα radiation (λ = 0.154178 nm) as the X-ray source. Thermogravimetric analysis (TGA) was performed to determine the Si ratio of the material from room temperature to 1000°C with a ramp rate of 10°C min⁻¹ in air and hold at 1000°C for 72 hrs.

Electrode fabrication and battery test.—The SiO materials were mixed with acetylene black (AB) (≥99.9%, S. A. 75 m² g⁻¹, Alfa Aesar, USA) and polyacrylic acid (PAA) (M.W. 450,000, Sigma-Aldrich, Germany) binder with a weight ratio of 6:1:2 by a mortar and pestle using N-methyl-2-pyrrolidone (NMP, ≥99.5%, MTI, China) as solvent to form slurry. The slurry was then coated onto copper foil using a doctor blade. The electrode was dried on a hot plate and compressed by a roll press, after which the electrode was punched into 16 mm diameter discs. The packing density of all electrodes were adjusted to about 1.2 g cm⁻³, with electrode loadings of about 1 mg cm⁻². This corresponds to an electrode porosity of about 40–50% (see Table I). The electrodes were then dried at 110°C for 4 hours in a Buchi oven before they were transferred into an Ar-filled glove box. The electrodes were assembled into 2032 coin cells with 1 mol L⁻¹ LiPF₆ in fluoroethylene carbonate (FEC) and diethyl carbonate (DEC) electrolyte with a 1:1 ratio by volume (99.95%, Dodo Chemical, China) as the electrolyte. Lithium metal (99.9%, MTI, China) was used as the counter electrode and Celgard 2325 membrane (Celgard Inc. USA) was used as the separator. Charge/discharge tests of the d-SiO@C were performed on a battery tester (Land, China) at a rate of C/10 (1 C = 1.0 mAh cm⁻²) under constant current/constant voltage (CC/CV) with a voltage of 0.01–3.0 V. The results were compared to those of disproporionate-SiO (d-SiO) powders which were obtained by thermal treatment. Typically, SiO@C powders were heat-treated in a tube furnace at 900°C (d-SiO@C-900°C) and 1000°C (d-SiO@C-1000°C) under an Argon (Ar) atmosphere for 24 hrs with a heating rate of 5°C min⁻¹. After the annealing process, the furnace was cooled naturally to room temperature.

Table I. Calculated SiO electrode parameters in this study.

<table>
<thead>
<tr>
<th>Material</th>
<th>Loading (mg cm⁻²)</th>
<th>Packing density (g cm⁻³)</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO</td>
<td>0.98±0.02</td>
<td>~1.2</td>
<td>44±46</td>
</tr>
<tr>
<td>SiO@C</td>
<td>0.95±0.05</td>
<td>~1.2</td>
<td>40±49</td>
</tr>
<tr>
<td>d-SiO@C-900°C</td>
<td>0.94±0.00</td>
<td>~1.2</td>
<td>40±48</td>
</tr>
<tr>
<td>d-SiO@C-1000°C</td>
<td>0.97±0.07</td>
<td>~1.2</td>
<td>41±47</td>
</tr>
</tbody>
</table>

© The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.032190jes]
coin cells were carried out at current rate of 150 mA g\(^{-1}\) on a battery tester (Neware, China) between 0.01 and 2 V vs. Li/Li\(^+\). For the depth of discharge test (DOD), multiple cells were made and discharged to different capacity limits (i.e. 500, 1000, 1500 mAh g\(^{-1}\) and fully lithiated), and then charged to 2 V vs. Li/Li\(^+\). Impedance tests were carried out after the electrodes were charged to 1.3 V vs. Li/Li\(^+\) with a voltage amplitude of 10 mV between 10 mHz and 100 kHz (Bio-Logic VMP3). All of the battery tests were carried out at 23 ± 1°C. The capacities were calculated with respect to the total mass of the active material.

Results and Discussion

Material characterizations.—Figure 1a displays the SEM image of the pristine SiO particles. The particles are irregular in shape, but the average particle size is about 1 \(\mu\)m. Carbon-coating the material results in material with similar morphology and size (Figure 1b). Figures 1c and 1d show similar appearance of the SiO@C material after disproportionation at 900°C and 1000°C, respectively. These images indicate that the heat-treatment process did not alter the morphology and shape of the materials.

The XRD patterns of pristine SiO, SiO@C, d-SiO@C-900°C, and d-SiO@C-1000°C powders are shown in Figure 2. The SiO material is amorphous, as no crystalline peaks can be observed. Carbon-coated SiO also shows an amorphous structure. In contrast, Si peaks can be observed after 900°C disproportionation and the intensity of the Si peaks increases at higher temperature (1000°C). This suggests that during the high-temperature annealing, SiO is disproportionated into Si and SiO\(_2\) regions, similar to that observed by Park et al.\(^{14}\)

TGA was conducted to obtain the ratio of Si/O in the pristine sample. During the heat-treatment to 1000°C, SiO will react with oxygen in air to form SiO\(_2\). According to the TGA data (Figure 3), the weight increase is about 30.5%. This corresponds to a starting material of SiO\(_{1.5}\). The Si/O ratio is consistent with that of Hirata et al., where the analyses were carried out on materials from the same source.\(^{12}\)

Depth of discharge tests on SiO.—SiO powders were first tested to understand the contributions to its discharge and charge capacities. Identical cells were made and discharged to different capacity limits under the DOD test, and then were charged to 2 V vs. Li/Li\(^+\). An upper cutoff potential of 2 V vs. Li/Li\(^+\) is chosen here as we intend to study the fundamental charge-discharge mechanism of SiO including the investigation of the amount of reversible and irreversible capacities from the conversion reaction (Li\(_2\)O). Figure 4a shows the first discharge and charge curves of the SiO batteries discharged to 500, 1000, 1500 mAh g\(^{-1}\) and 0.01 V vs. Li/Li\(^+\). Since the first discharge curves for all cells overlapped each other, only the curve corresponding to a full discharge is plotted in Figures 4a–4d and the end points of different cells are marked as “X”. SiO shows a slanted 1st discharge profile, which is characteristic of the amorphous SiO and consistent with other works.\(^{5,6,15}\) We note that the subsequent charge capacity depends on the depth of discharge – a higher charge capacity is obtained when the material is discharged deeper initially. In the charge curves, the slanted region between 0.2 V and 0.65 V vs. Li/Li\(^+\) is attributed to the removal of lithium from the Li-Si alloy. The small capacity between 0.65 V and 2 V vs. Li/Li\(^+\) is attributed to the partial removal of lithium from Li\(_2\)O formed during the previous lithiation.

To determine the contributions to the reversible and irreversible capacities, we can plot the initial charge capacity vs. discharge capacity for different cells as in Figure 4c. The data show a linear pattern which can be fitted with a straight line. In addition, the fitted line is deviated from the origin with a non-zero x-intercept. From our previous analysis, the slope of the line represents the intrinsic efficiency of the material, which is the proportion of lithium that can be extracted reversibly from the material.\(^{11}\) On the other hand, the non-zero x-intercept represents the amount of capacity that is completely irreversible. For the SiO material charged to 2 V vs. Li/Li\(^+\) in this work, the measured slope is 80% with an x-intercept of 264 mAh g\(^{-1}\) (Table II.) This suggests that on top of an irreversible capacity of 264 mAh g\(^{-1}\) during first discharge, an extra 20% of the Li remained in the material after charging to 2 V. If a cutoff potential of 1 V vs. Li/Li\(^+\) is considered, as in a practical battery, the intrinsic efficiency (slope) of SiO is reduced to 75%, and the amount of irreversible capacity is increased to 399 mAh g\(^{-1}\) because the Li\(_2\)O component is regarded as irreversible with a lower cutoff potential. Compared to crystalline Si materials, which has an intrinsic efficiency of 90% and an x-intercept

Figure 1. SEM images of a) SiO, b) SiO@C, c) SiO@C disproportionated at 900°C, and d) SiO@C disproportionated at 1000°C.

Figure 2. XRD patterns of SiO, SiO@C, SiO@C disproportionated at 900°C and SiO@C disproportionated at 1000°C.

Figure 3. TGA result of SiO sample.
of 55 mAh g\(^{-1}\).\(^{11}\) SiO has a much lower intrinsic efficiency (more Li trapped in the material) and a larger irreversible capacity.

Previous work by Kim et al. has suggested that during the lithiation of SiO, Li\(_{3.75}\)Si, Li\(_2\)O and Li\(_4\)SiO\(_4\) are formed.\(^5\) Among the reaction products, Li\(_4\)SiO\(_4\) is suspected to be completely inactive, whereas Li\(_2\)O can be charged and discharged to a certain degree and contributes significantly to the conversion reaction of oxide materials such as NiO, SnO\(_2\), etc.\(^{16,17}\) These are consistent with results from our DOD test. Our work suggests that there are 2 contributions to the irreversible capacity of SiO: 1) the formation of an inactive matrix of lithium silicate, represented by the x-intercept; 2) the efficiency of the delithiation of Li\(_{3.75}\)Si and Li\(_2\)O, represented by the slope of the DOD test (see Figure 4e). To further analyze the results, we hypothesize a reaction mechanism during lithiation of SiO as following:

\[
\text{SiO} + y\text{Li}^+ + ye^- \rightarrow a\text{Li}_{3.75}\text{Si} + b\text{Li}_2\text{O} + c\text{Li}_4\text{SiO}_4 + d\text{SiO}_2 \quad \quad \text{[1]}
\]

Table II. Summary of slope and x-intercept from DOD test of SiO, SiO@C and disproportionated SiO@C.

<table>
<thead>
<tr>
<th>Material</th>
<th>Slope</th>
<th>x-intercept (mAh g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO</td>
<td>80% ± 0.5%</td>
<td>264 ± 5</td>
</tr>
<tr>
<td>SiO@C</td>
<td>93% ± 0.2%</td>
<td>310 ± 4</td>
</tr>
<tr>
<td>d-SiO@C-900°C</td>
<td>88% ± 0.2%</td>
<td>246 ± 2</td>
</tr>
<tr>
<td>d-SiO@C-1000°C</td>
<td>87% ± 0.1%</td>
<td>189 ± 1</td>
</tr>
</tbody>
</table>

Figure 4. First cycle discharge-charge curves of a) SiO, b) SiO@C, c) d-SiO@C-900°C, d) d-SiO@C-1000°C with different discharge capacity limits, and e) initial charge capacity vs. initial discharge capacity from depth of discharge tests with different electrodes.
tion of SiO₂ in the material that are not reacted (4th compound). The compositions of the product “a”, “b”, “c”, and “d” in Equation 1 can be estimated using results from the DOD test. Specifically, the coefficient “c” corresponds to the x-intercept of the DOD test (264 mAh g^{−1}) based on the assumption that Li₄SiO₄ is irreversible. The total first discharge capacity obtained can be converted into the value of “y”. The remaining three coefficients can be solved as there are 3 relationships corresponding to the balance of chemical elements of Li, Si and O.

The fitted parameters for SiO based on the obtained 1st discharge capacity and the x-intercept of the DOD test is shown in Table III, and the reaction is estimated to be:

\[
\text{SiO}_{1.12} + 3.10 \text{Li}^+ + 3.10e^- \rightarrow \text{0.63 Li}_{3.75}\text{Si} + 0.15\text{Li}_2\text{O} + 0.11\text{Li}_2\text{SiO}_2 + 0.26\text{SiO}_2
\]

[2]

The result suggests that for every mole of SiO_{1.12}, the products after lithiation are 0.63 moles Li_{3.75}Si, 0.15 moles Li₂O, 0.11 moles Li₂SiO₂, and 0.26 moles SiO₂. A total of 3.10 moles of Li⁺ is inserted, corresponding to the first discharge capacity of 1804 mAh g^{−1}. The measured first charge capacity is 1250 mAh g^{−1}, corresponding to an extraction of 2.14 moles of Li⁺. This is consistent with Equation 2, where 80% (= slope of DOD test) of Li in “Li_{3.75}Si/Li₂O” is reversible (i.e. 0.8 \times (0.63 \times 3.75) + (0.15 \times 2) = 2.13), and all Li in Li₂SiO₂ is irreversible. In addition, most of the Li is removed from the Li_{3.75}Si component formed after lithiation, which is also consistent with the charging curve (Figure 4a) where most of the capacity originates from a potential range below 1 V vs. Li/Li⁺.

Effect of carbon coating. — SiO is coated by a layer of carbon by chemical vapor deposition. The amount of carbon coating is 3 wt%. The SiO@C material was made into electrodes and tested in the same way as SiO. Figure 4b shows the discharge-charge curves during 1st cycle. With carbon coating, both discharge and charge capacities are higher. In particular, charge curves show a larger contribution to capacity above 0.65 V vs. Li/Li⁺ in intrinsic efficiency. This is consistent with the additional capacity contributed from silicon in the form of Li₄SiO₄ and 0.26 moles SiO₂. A total of 3.10 moles of Li from SiO₂@C. Apart from lithium removal from Li_{3.75}Si, we also observe higher reversibility from Li₂O, leading to higher intrinsic efficiency. This is consistent with the additional capacity from a potential above 0.65 V vs. Li/Li⁺ as seen in the charge curves in Figure 4b.

Effect of disproportionation. — The microstructure of SiO is still controversial. There are two mainstreams of the structural model, one is the random bonding (RB) model and another is random mixture (RM) model. The RB model assumes a random network of silicon and oxygen in SiO, while the RM model assumes that there are 2 separate phases including Si and SiO₂. A modified RM model was also proposed by Hirata et al. where SiO acts as a transition layer between amorphous Si and SiO₂. When SiO is heat-treated, it will disproportionate to Si and SiO₂. The amount of crystalline Si and Si⁴⁺-based amorphous suboxide will increase as the temperature increases. This is consistent with our XRD results, where the Si and SiO₂ peaks are observed when SiO@C is heat-treated.

The 1st cycle discharge-charge curves for the d-SiO@C-900°C and d-SiO@C-1000°C are shown in Figures 4c and 4d, respectively. With disproportionation, we observe the initial discharge curves shift to lower potential. This is attributed to the discharge of the crystalline which is related to the charge transfer process, and a sloping line in low-frequency region which is assigned to the solid-state Li diffusion inside active material. These curves are fitted with an equivalent circuit model as given in Figure 5b, where R_S, R_{SEI} and R_{CT} represent the internal resistance, resistance from SEI and charge-transfer resistance, respectively. CPE, C_d and C_{int} are related to constant phase element, double layer capacitance and interaction capacitance, and Z_W is the Warburg resistance corresponding to the lithium diffusion process. It can be seen that carbon coating decreases the charge-transfer resistance (R_{CT}) from 33.8 Ω to 10.7 Ω. These results indicate that the incorporation of carbon layer can significantly improve the electrical conductivity, thus increasing the initial discharge (2042 mAh g^{−1}) and charge capacity.

Carbon coating also increases the slope of the DOD test and the reversible capacity to 93%. This is consistent with the first charge capacity of 1605 mAh g^{−1}, corresponding to an extraction of 2.75 moles of Li from SiO@C. Apart from lithium removal from Li_{3.75}Si, we also observe higher reversibility from Li₂O, leading to higher intrinsic efficiency. This is consistent with the additional capacity from a potential above 0.65 V vs. Li/Li⁺ as seen in the charge curves in Figure 4b.
Si that is formed during disproportionation. The initial discharge capacities are also reduced. Interestingly, the results of DOD test give a slope of about 87–88%, while the x-intercepts decrease with disproportionation temperature (Table II).

Using Equation 1 and the respective capacities, the lithiation processes of the d-SiO@C-900°C and d-SiO@C-1000°C after disproportionation can be estimated to be as Equations 4 and 5, respectively:

\[
\text{SiO}_{1.12} + 3.02 \text{Li}^+ + 3.02 \text{e}^- \rightarrow 0.62 \text{Li}_{3.75} \text{Si} + 0.14 \text{Li}_2\text{O} + 0.10 \text{Li}_2\text{SiO}_4 + 0.28 \text{SiO}_2
\]

\[
\text{SiO}_{1.12} + 2.40 \text{Li}^+ + 2.40 \text{e}^- \rightarrow 0.54 \text{Li}_{3.75} \text{Si} + 0.03 \text{Li}_2\text{O} + 0.08 \text{Li}_2\text{SiO}_4 + 0.38 \text{SiO}_2
\]

The results from the fitting are shown in Table III. Overall, disproportionation decreases the amount of Li$_{3.75}$Si, Li$_2$O and Li$_2$SiO$_4$ formed after lithiation (coefficients “a”, “b” and “c”), but increases the amount of inactive SiO$_2$ (coefficient “d”). This explains the observed decrease in capacity with disproportionation. This is also consistent with our XRD results and other studies that the amount of Si and SiO$_2$ is increasing while that of SiO is decreasing as the disproportionation temperature increases.\(^{13,19}\) Despite a decrease in the amount of lithiated silicide after discharge, the amount of Li$_2$SiO$_4$ also decreases, thus increasing the reversibility of the electrode (smaller x-intercept for the DOD test). Disproportionation also decreases the amount of Li$_2$O formed after discharge, consistent with the lower content of SiO.

Cycle performance of SiO samples.—Cycle performance of the 4 types of electrodes were tested at 150 mA g$^{-1}$, and the results are shown in Figure 6. SiO electrode shows a small drop in capacity during the first 10 cycles. Cycle efficiencies during the initial 10 cycles are also lower than SiO@C electrode, suggesting that there are some more Li trapped in the electrode with cycling. SiO@C shows higher charge capacity, better cycle efficiencies and also better cycle performance. Disproportionation decreases the available capacity, with slightly worse cycle performance than the SiO@C material.

Conclusions

We have applied the depth of discharge test to study the contributions to the irreversibility of SiO electrodes. Our results suggest that the amount of irreversible capacity of SiO depends on the type of reaction products. Using the obtained capacities from electrochemical depth of discharge tests, we can estimate the proportion of the reaction products. Even though some simple assumptions have to be made during the analyses, the trends are consistent with our experimental observations. Specifically, carbon coating the material leads to higher reactivity of SiO with Li due to improved electrical conductivity and reversibility of the Li$_2$O conversion reaction. Though, the amount of inactive lithium silicate is also increased. Disproportionation reduces the irreversibility of SiO by forming some inactive SiO$_2$ in the material, though the overall capacity is reduced. Our results suggest that there are opportunities to further improve the first cycle efficiency of SiO by finding ways to control the reaction products during initial lithiation process.

Acknowledgments

The work described in this paper was supported by a grant from the Research Grants Council (CityU 21202014) of the Hong Kong Special Administrative Region, China.

ORCID

Denis Y. W. Yu https://orcid.org/0000-0002-5883-7087

References