Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury

Xu, Shisan; Liu, Chichi; Xie, Fangjing; Tian, Li; Manno, Sinai HC.; Manno III, Francis A.M.; Fallah, Samane; Pelster, Bernd; Tse, Gary; Cheng, Shuk Han

Published in:
Fish and Shellfish Immunology

Published: 01/06/2019

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY-NC-ND

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.fsi.2019.03.058

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 19/07/2019
Full length article

Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury

Shisan Xua, Chichi Liua, Fangjing Xiea, Li Tiana, Sinai HC. Mannob, Francis A.M. Manno IIIb, Samane Fallaha, Bernd Pelsterc,d,e,f,∗∗∗, Gary Tsed,e,f,∗, Shuk Han Chenga,g,h,∗∗

a Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
b Department of Physics, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
c Institut für Zoologie, Universität Innsbruck, Center for Molecular Biosciences, Universität Innsbruck, Innsbruck, Austria
d Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
e Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
f Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
g State Key Laboratory of Marine Pollution (SKLMP) at City University of Hong Kong, Hong Kong SAR, PR China
h Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China

\textbf{A B S T R A C T}

Inflammation plays a crucial role in cardiac regeneration. Numerous advantages, including a robust regenerative ability, make the zebrafish a popular model to study cardiovascular diseases. The zebrafish breakdance (bre) mutant shares several key features with human long QT syndrome that predisposes to ventricular arrhythmias and sudden death. However, how inflammatory response and tissue regeneration following cardiac damage occur in bre mutant is unknown. Here, we have found that inflammatory response related genes were markedly expressed in the injured heart and excessive leukocyte accumulation occurred in the injured area of the bre mutant zebrafish. Furthermore, bre mutant zebrafish exhibited aberrant apoptosis and impaired heart regenerative ability after ventricular cryoinjury. Mild dosages of anti-inflammatory or prokinetic drugs protected regenerative cells from undergoing aberrant apoptosis and promoted heart regeneration in bre mutant zebrafish. We propose that immune or prokinetic therapy could be a potential therapeutic regimen for patients with genetic long QT syndrome who suffers from myocardial infarction.

\textbf{1. Introduction}

The inflammatory response is essential for fighting infection, maintaining normal tissue homeostasis and initiating wound healing. Wound healing is a highly dynamic and well-orchestrated process in which the inflammatory response is involved in determining tissue injury leading to regeneration or a fibrotic scar [1]. Inflammation appears to play a dual role, with positive and negative effects on cardiac regeneration [1–3]. In zebrafish and neonatal mice, inflammation is indispensable for initiating the regeneration process [4,5]. However, inflammatory cytokines, such as TNF-\(\alpha\) and IL-1\(\beta\), also result in apoptosis and impair regeneration [1,4–7]. It has been reported that in fish, an excessive immune response or immune deficiency causes a failure of heart regeneration [6,7]. Previously, we have shown that matrix metalloproteinases (MMPs) act as inflammatory mediators during zebrafish heart regeneration. During the early stages after injury, MMPs could modulate leukocyte recruitment via chemokines, and thereby regulate zebrafish heart regeneration [8].

Congenital long QT syndrome (LQTS) is a potential life-threatening cardiac arrhythmia caused by mutations in different ion channel genes, such as KCNQ1, KCNH2, and SCN5A, resulting in action potential prolongation [9]. It is estimated that LQTS affects 1 in 3000 newborns and it results in approximately 4000 deaths yearly in the United States [10]. Zebrafish share several characteristics with human cardiac repolarization, as well as similar electrical phenotypes in response to pharmacological and genetic manipulation [10–12]. In zebrafish breakdance (bre), an I59S missense mutation occurs in the KCNH2 gene [also termed the human Ether-à-go-go-Related Gene, HERG],

\begin{itemize}
 \item Corresponding author.
 \item ‘‘ Corresponding author. Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
 \item ‘‘‘ Corresponding author. Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China.

E-mail addresses: Bernd.pelster@uibk.ac.at (B. Pelster), Tseg@cuhk.edu.hk (G. Tse), bhcheng@cityu.edu.hk (S.H. Cheng).

https://doi.org/10.1016/j.fsi.2019.03.058
Received 4 December 2018; Received in revised form 18 March 2019; Accepted 26 March 2019
Available online 27 March 2019
1050-4648/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
2.1. Zebra fish maintenance

Zebrafish wild-type (AB) strain and bre mutant were maintained in a controlled environment at The City University of Hong Kong fish facility, at 28 ± 1 °C with a daily 14:10 day-light cycle [14]. All experimental procedures were approved by the Department of Health, Hong Kong, SAR, China (ref 14–118) in DH/HA&P/8/2/5 Pt.3, and the experiments were conducted in accordance with the relevant guidelines and regulations in Hong Kong, SAR, China.

Dexamethasone (Dex, D-2915; Sigma), MMP9/MMP13 inhibitor I (MMP in, 21265; Cayman) and cisapride (Cs, CDS021610; Sigma-Aldrich) were dissolved in DMSO at 100 mM, 1 mM and 10 mM, respectively and stored at −20 °C. Subsequently, dexamethasone, MMP9/MMP13 inhibitor I, and cisapride were diluted to 100 µM, 1 µM, and 10 µM in fish water prior to use, respectively. In one series of experiments, the bre mutant ventricle was cryoinjured and treated with 0.1% DMSO (vehicle control), 100 µM dexamethasone, 1 µM MMP9/MMP13 inhibitor I, or 10 µM cisapride, respectively. Water for zebrafish and chemicals were changed every two days.

2.2. Zebrafish heart cryoinjury and fin amputation

Adult zebrafish (6–12months) were individually anesthetized by immersion in 0.04% tricaine solution (E10521; Sigma-Aldrich), and subsequently placed in a groove within a wet sponge. Once the heart was exposed, cryoinjury was performed on the ventricle using methods described previously [18]. A sham operation was performed on zebrafish, in which hearts were exposed but not subjected to cryoinjury. Zebrafish larvae at 3 dpf were also used, anesthetized using 0.01% tricaine solution, and transferred to a 1.5% agar gel plate where a fin amputation was performed using a sharp blade.

2.3. RNA sequencing analysis and qRT-PCR

Total RNA was extracted using a Trizol reagent (9109; Takara Bio., Inc.), and decontaminated with RQ1 RNA-free DNase (M6101; Promega). For RNA sequencing, a paired-end 50-bp read length sequencing was performed using an Illumina Hiseq 2000 platform, three bio-replicates were performed. Sequencing and the primary analysis were performed by BGI (Shenzhen, China). For qRT-PCR, 1 µg total RNA was used to synthesize cDNA using the PrimeScript reverse transcription (RT) reagent kit (6210B; Takara) according to the manufacturer's instructions. The expression of ifn-γ, irg1, il-1β, ccl2, ccl11, mf-a, l-plasmin, mmp13a, caspase a, caspase 3a, caspase 3b, caspase 7, caspase 8 and bcl-2 like were determined by qRT-PCR using SYBR Premix Ex Taq (RR402A; Takara), and β-actin was used as a reference gene. Each gene analysis was performed in triplicate and the results were analyzed using the 2−ΔΔCt method. The primer sequences were listed in Table S1.

2.4. Histological techniques

Zebrafish were sacrificed, hearts were harvested and subsequently fixed with 4% PFA at 4°C overnight. A series of ~5 µm paraffin sections were prepared. The volume of the scar in the ventricle was determined by Picrosirus red staining (ab150681, Abcam) and morphometric analysis conducted as described previously [8].

2.5. Immunohistochemistry

Paraffin sections were dewaxed and antigens were retrieved by incubating the sections in 10 mM sodium citrate buffer (0.05% Tween 20, pH 6.0) at 95°C for 15 min. The staining and microscopy method was
performed as previously described, and images of larvae were captured using a Zeiss Lightsheet Z.1 3D microscope [8]. The primary antibodies used in the study were mouse anti-L-plastin (sc-133218; Santa Cruz), rabbit anti-PCNA (sc-7907; Santa Cruz), mouse anti-troponin T (M5A5; Thermo), rabbit anti-phospho-Histone H3 (Ser10) (06–570; Millipore), rabbit anti-α-smooth muscle actin (GTX25694; Gentex), mouse anti-myosin heavy chain (MF-20; DSHB), and mouse anti-embCMHC (N2.261; DSHB). The secondary antibodies used were Cy3-conjugated goat anti-mouse (A10521; Invitrogen) or Alexa Fluor 488-conjugated goat anti-rabbit (A11034; Invitrogen) antibodies.

2.6. TUNEL staining

Paraffin sections were deparaaffinized and rehydrated. Apoptotic cells were detected using the DeadEnd™ Fluorometric TUNEL System kit (G3250; Promega) according to the manufacturer’s instructions. Briefly, rehydrated sections were equilibrated with 0.85% NaCl and PBS, refixed with 4% PFA in PBS (15 min, RT), washed with PBS, and treated with 10 mg/ml Proteinase K in PBS (8–10 min, RT). The samples were further refixed with 4% PFA in PBS (5 min, RT), washed with PBS, and then incubated in equilibration buffer. The sample was incubated with the TUNEL reaction mixture at 37 °C for 1 h, counterstained with DAPI and images were acquired using fluorescent microscopy. The TUNEL-positive cells in the injured area were quantified with Image J.

2.7. Statistical analysis

Statistical analysis was performed using Student’s two-tailed t-test (Microsoft Excel 2010) and one way-ANOVA (SPSS 13.0) with LSD post-hoc test. For statistical testing, p < 0.05 was considered to be statistically significant. Data are presented as means ± S.D. (standard deviation).

Fig. 1. Excessive inflammation is induced in the injured tissue of bre mutant zebrafish. (A). Heat map shows transcriptome analysis of AB and bre mutant heart at 4 dpf, n = 3. (B, C). The qRT-PCR analysis of gene expression in the heart of AB and bre mutant zebrafish at 4 dpf (B), and untreated heart (C). The asterisk indicates significant difference observed at p < 0.05 (*) and p < 0.01 (**) between AB and bre mutant zebrafish, while the ‘n.s.’ indicates no significant difference, n = 3, two tail t-test. (D). Representative heart sections of sham-operated, 1 dpf and 4 dpf AB wild-type and bre mutant zebrafish showing L-plastin positive cells (red, white arrowhead) in the injured area (bounded by a white dashed line). Scale bar: 100 μm. (E). Bar chart shows the quantification of L-plastin positive cells (n = 4–6) in panel (C) was significantly different at p < 0.01 (**) and p < 0.001 (***) between AB and bre mutant zebrafish, two tail t-test. (F). Representative images displaying L-plastin positive cells (red) in the fin of bre mutant larvae. The white dash line in the panel indicates the shape of the uncut fin. Scale bar: 200 μm. (G). Bar chart shows the quantification of L-plastin positive cells in panel E was significantly different at p < 0.001 (***) between AB and bre mutant zebrafish larvae, two tail t-test. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
3. Results

3.1. Cryoinjury induced excessive inflammation in bre mutant zebrafish heart

To investigate the differential expression of genes between in the hearts of AB wild-type and bre mutant zebrafish after cardiac damage, cryoinjury was applied to the ventricles and RNA sequencing analysis was performed at 4 dpc in both AB and bre mutant fish. Transcriptome analysis identified approximately 26,450 genes in both groups. Among these genes, 53 candidate genes were identified as encoding proteins or chemokines and were known to be involved in inflammation. Their expression levels were significantly higher in bre mutant than in wild-type zebrafish (Fig. 1A and Table S2-3). These genes included mpeg1, coro1a, l-plastin etc. which are in ion transport (i.e., Ca2+, Na+; Fig. 1A and Table S6). These genes were significantly downregulated in the heart of bre mutant compared with AB wild-type zebrafish at 4 dpc, and this suggests that the regenerative ability of the bre mutant zebrafish might be impaired.

To test whether untreated bre mutant zebrafish also express high levels of inflammatory genes, qRT-PCR was performed to determine the expression of ifn-γ, il-1β, tnf-α, ccl2, cxc11, l-plastin, and mmp13a in the heart of untreated bre mutant and AB zebrafish (Fig. 1C). Interestingly, except for mmp13a and ccl2, no significant difference in expression level was found between bre mutant and AB zebrafish. Furthermore, the expression of ccl2 was lower in bre mutant.

To follow-up the gene expression assays, we assessed the accumulation of inflammatory cells (i.e. leukocytes) in the lesion site of bre mutant hearts after cryoinjury. The immunofluorescence analysis revealed a higher number of leukocytes at 1 dpc and 4 dpc in bre mutant zebrafish compared with AB zebrafish, but no significant difference was observed between sham-operated groups (Fig. 1D and E).

To examine whether injury could also induce an excessive inflammatory response in other tissue, we assessed leukocytes in the amputated fin using the L-plastin antibody. In the intact fin, the detection of L-plastin positive leukocytes was less in both bre mutant and AB larvae (Fig. 1F). After 3 h post amputation (hpa), L-plastin positive leukocytes were accumulated in the amputated fin site, and there were more leukocytes in bre mutant than in AB zebrafish (Fig. 1G). By 12 hpa, the number of leukocytes was decreased, and no significant difference was observed between bre mutant and AB zebrafish (Fig. 1H). By 12 hpa, the number of leukocytes was decreased, and no significant
These results indicate that fin injury induced an increase in the number of inflammatory cells in the wound of bre mutant zebrafish larvae. Overall, the data indicate that KCNH2 deficiency might be involved with modulating the immune response after tissue injury in bre mutant zebrafish. Furthermore, myocardium infarction (MI) induced by cryoinjury results in excessive inflammatory response in the heart which is accompanied by a high expression of genes involved in inflammation, chemokines, and leukocytes infiltration.

3.2. Aberrant apoptosis and impaired heart regeneration in bre mutant zebrafish after cryoinjury

Inflammation and pro-inflammatory chemokines have been suggested to directly or indirectly induce cell death during wound healing and MI [19,20]. In the heart of bre mutant zebrafish, cryoinjury caused overexpression of inflammatory response genes, including *tnf-a* and *il-1β*, which has been shown to lead to chronic inflammation and thereby apoptosis in zebrafish [6].

To test whether excessive inflammatory response causes aberrant cell death in bre mutant heart after cryoinjury, we performed TUNEL staining in both bre mutant and AB zebrafish heart at 1 dpc, 4 dpc and in sham-operated groups. Consistent with our previous study [8], TUNEL-positive cells were detected at a peak level at 1 dpc, and then decreased gradually (Fig. 2A). However, a significantly increased number of apoptotic cells was found in the injured area of heart in bre mutant zebrafish compared with AB zebrafish at 1 dpc and 4 dpc, while no significant change was observed in sham-operated groups (Fig. 2A and B). In addition, our qRT-PCR results showed that the expression of caspase b, caspase 3α, caspase 7-like, caspase 8 and anti-apoptotic gene *bcl-2* like was higher in bre mutant than in AB heart at 4 dpc (Fig. 2C). Furthermore, our transcriptome analysis showed that the expression level of apoptotic cytokines such as caspase b, caspase 7-like, caspase 8 and was markedly high in bre mutant heart compared with AB at 4 dpc, while anti-apoptotic gene *bcl-2* like was also markedly expressed in bre mutant heart, which might be a *in vivo* self-regulation mechanism (Table S7). These results indicate that highly expressed inflammatory genes in bre mutant zebrafish heart might cause aberrant apoptosis after injury.

An overactive immune response to cardiac injury in adult mice can negatively affect regeneration by promoting fibrotic scar formation [4,21]. To further analyze the heart regenerative ability in bre mutant zebrafish, we cryoinjured the heart of AB and bre mutant zebrafish utilizing an identical cryoprobe and time paradigm, to ensure the ventricle had a comparable scale of cardiac damage. After 30 days, the zebrafish were sacrificed and the hearts were extracted. Histological analysis revealed that there was a larger collagen-rich scar in the heart of bre mutant zebrafish compared with AB zebrafish (Fig. 2D and E). In addition, we found the compact layer in the heart of bre mutant zebrafish was significantly thicker than in AB zebrafish. Here apparently collagen was observed in the subepicardial layer of heart in bre mutant zebrafish (Fig. 2F and G). These data suggest that the heart regenerative...
ability was impaired in bre mutant zebrafish after cardiac damage.

Cell proliferation is crucial for heart regeneration and provides new cell sources to restore the lost or damaged tissue. Interestingly, cell proliferation is also regulated by inflammation [4,22]. Thus, we explored whether proliferating cells were affected in the bre mutant. We stained the heart at 7 dpc with anti-troponin T (TnnT) and PCNA to label proliferating cardiomyocytes. Surprisingly, we found that the number of double positive of TnnT+ and PCNA+ proliferating cardiomyocytes was higher in bre mutant zebrafish heart than in AB wild type zebrafish (Fig. 2H and I). To further confirm the proliferating cells in bre mutant and AB zebrafish heart, we quantified the number of mitotic cells in the injured area of the heart at 7 dpc using immunofluorescence analysis. Consistent with the TnnT+/PCNA+ staining, we observed more pH3-positive mitotic cells in the injured area of the heart in bre mutant compared with AB zebrafish (Fig. 2J and K). Then, we determined the expression of embryonic cardiac myosin heavy chain (embCMHC), which is used as a marker of undifferentiated CMs [23]. Our data revealed that embCMHC was markedly induced in close vicinity to the injured area of the heart in bre mutant when compared with AB zebrafish (Fig. S1).

To visualize the myofibroblasts and smooth muscle cells, we used an antibody against α-smooth muscle actin (α-SMA), which is involved in the ECM and blood vessel formation [24,25]. In the injured heart of AB zebrafish at 4 dpc, an insignificant quantity of α-SMA labeled cells were detected (Fig. 2L). In contrast, a considerable number of α-SMA positive cells were induced in the subepicardial layer and near the inner border in the injured area of the heart in bre mutant (Fig. 2L).

Therefore, our data indicate that bre mutant zebrafish displayed aberrant apoptosis and impaired heart regeneration after cryoinjury. Interestingly, the number of proliferating cells was also higher in the injured area of the bre mutant heart than in AB wild type zebrafish.

3.3. Anti-inflammatory and prokinetic drugs suppress excessive inflammation and aberrant apoptosis in bre mutant zebrafish after injury

It has been suggested that inflammation and pro-inflammatory chemokines can directly or indirectly induce cell death during wound healing and MI [19,20]. In heart of bre mutant zebrafish, cryoinjury caused overexpression of inflammatory response genes, including ifn-α and il-1β, which has been shown to lead to chronic inflammation and thereby apoptosis in zebrafish [6]. The literature indicates that anti-inflammatory glucocorticoids such as dexamethasone (Dex) can attenuate leukocyte infiltration, reduce the expression of il-1β and decrease apoptosis in the wound [6,26]. To test whether dexamethasone can reduce aberrant apoptosis in the heart of bre mutant after injury, we first assessed the number of leukocytes in the injured area of the heart using anti-L-plastin staining after dexamethasone treatment. Compared with the control group treated with DMSO, dexamethasone significantly attenuated the number of L-plastin positive cells in the injured area at 1 and 4 dpc (Fig. 3 A, B). Furthermore, the number of L-plastin positive cells in the injured area of the heart of bre mutant zebrafish treated with dexamethasone was similar to AB zebrafish at 1 dpc and 4 dpc (Fig. 1D and E). Moreover, similar to dexamethasone treatment, MMP9/MMP13 inhibitor 1A and cisapride also reduced the number of L-plastin positive leukocytes in the injured area of the heart in bre mutant zebrafish (Fig. 4 A, B).

The subsequent procedure we performed was the evaluation of dexamethasone to induce a reduction of aberrant apoptosis in the wound. The TUNEL-staining analysis revealed that, compared to the vehicle control, fish treated with dexamethasone had a significantly reduced number of apoptotic cells in the injured area (Fig. 3C and D). In addition, our qRT-PCR results showed that dexamethasone reduced the expression level of ifn-α and il-1β, and promoted the expression of anti-inflammatory reagents and cisapride rescue the heart regenerative capability in bre mutant after cryoinjury. (A) Representative pictures red staining paraffin sections of heart in bre mutant treated with DMSO (vehicle control), Dex (100 μm), MMP in (1 μm) and Cis (10 μm) illustrate the scar volume at 30 dpc. The black dashed line bounded area indicates the injured scar area. Scale bar: 100 μm. (B) Bar chart (n = 4) shows the quantification of the percentage of scar volume in panel A was significantly different between control and each treatment group at p < 0.01 (***) and p < 0.001 (**), two tail t-test. (C) Representative images of immunofluorescent labeling of cardiomyocyte (red) and PCNA (green) in the injured area of bre mutant zebrafish treated with DMSO (vehicle control), Dex (100 μm), MMP in (1 μm) and Cis (10 μm) at 7 dpc. The white arrow indicates the double positive TnnT+/PCNA+ cells in the injured area (IA). Scale bar:100 μm. (K). Bar chart shows the quantification of double positive TnnT+/PCNA+ (n = 4) in panel H, two tail t-test, p < 0.05 (*). (E) Representative heart sections of bre mutant with different treatment, displaying mitotic cells (green) in the injured area at 7 dpc. Scale bar: 100 μm. (F). Bar chart shows the quantification of mitotic cells (n = 3–4) in panel C was significantly different between each group at p < 0.01 (**), two tail t-test. (G). Representative heart sections of bre mutant zebrafish with different treatment show the α-SMA (green, white arrowhead) at 4 dpc. Scale bar: 100 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
apoptotic gene bcl-2-like (Fig. 3E and F).

Accordingly, our data are consistent with a previous study reporting that dexamethasone can attenuate leukocytes and reduce apoptotic regenerative cells in the wound [6]. It has been reported that MMP13 was a target for glucocorticoids and the expression is involved in apoptosis processes [27–29]. We then investigated whether MMP9/MMP13 inhibitor I could suppress aberrant apoptosis in bre mutant zebrafish. Here, the results were similar with dexamethasone-treated zebrafish, where apoptotic cells were reduced in the injured area of the heart with the MMP9/MMP13 inhibitor I treated zebrafish compared with vehicle control zebrafish (Fig. 3C). Additionally, MMP9/MMP13 inhibitor I increased the expression level of the anti-apoptotic gene bcl-2-I in heart of bre mutant zebrafish compared with vehicle control zebrafish (Fig. 3F).

Defective ERG protein trafficking reduces the number of potassium channels in the cell membrane, thereby predisposing to ventricular arrhythmias in bre mutant [15]. Meder et al. and colleagues found that cisapride can rescue the ERG protein trafficking defect in bre mutant zebrafish, thereby suppressing arrhythmogenesis [15]. In this regard, we investigated whether cisapride could rescue the excessive inflammation and aberrant apoptosis in the injured area of the heart. Interestingly, treatment with 10 μm cisapride not only reduced the number of L-plastin positive leukocytes and cell death in the injured area of the heart (Fig. 3A, C), but also suppressed the level of expression of inf-a, il-1β and caspase 8 (Fig. 3E and F) in bre mutant at 4 dpc compared with vehicle control.

Collectively, these data suggest that a mild dosage of anti-inflammatory chemicals (i.e. dexamethasone and MMP9/MMP13 inhibitor I) and a pro-kinetic drug (cisapride) reduces excessive inflammation and aberrant apoptosis in the injured heart, which might rescue the heart regenerative capability in bre mutant zebrafish.

3.4. Anti-inflammatory and prokinetic drugs rescue the heart regenerative ability in bre mutant zebrafish after cryoinjury

It has been reported that an overactive immune response to cardiac injury in adult mice can negatively affect regeneration by promoting the formation of a fibrotic scar [4,21]. Hence, we used anti-inflammatory glucocorticoids dexamethasone (Dex) treatment to investigate if a rescue of fibrotic scar degradation occurs in the ventricle of bre mutant zebrafish. We treated bre mutant zebrafish with dexamethasone in the first week after cardiac cryoinjury. Subsequently, those zebrafish were placed back in the standard conditions of fish water. Histological analysis demonstrated that scar volume was partly reduced (p = 0.078) in zebrafish treated with dexamethasone compared to the vehicle control group (DMSO) at 30 dpc (Fig. 4A). It is known that MMP13 was a target for glucocorticoids in zebrafish [27–29]. Our results show that the expression of mmp13 was higher in both the untreated and injured heart of bre mutant zebrafish compared with AB zebrafish (Fig. 1B and C). To investigate whether down-regulating activity of MMP13 could rescue the heart regenerative capability in bre mutant zebrafish, we cryoinjured the ventricle and administrated a mild dosage of MMP9/MMP13 inhibitor I (MMP in.; 1 μm) dissolved in the zebrafish water in the first week. The histological results indicated that MMP9/MMP13 inhibitor I promoted fibrotic scar degradation in bre mutant (Fig. 4A). Our data shows that cisapride could rescue the excessive inflammation and aberrant apoptosis in bre mutant zebrafish (Fig. 3). Therefore, we investigated whether cisapride could promote heart regeneration in bre mutant zebrafish. Interestingly, treatment with 10 μm cisapride significantly reduced the scar volume at

Fig. 5. Proposed model describing inflammation and regeneration after heart cryoinjury. A. Cryoinjury triggers an inflammatory response in zebrafish heart. Inflammatory cytokines induce apoptosis and apoptotic factors (i.e. caspases) can activate cytokines. Regenerative process is initiated by inflammatory cytokines. Inflammation orchestrates the balance between apoptosis and regeneration, thereby promoting heart regeneration in AB zebrafish. B. Cryoinjury induces excessive leukocyte accumulation and inflammatory gene expression in bre mutant (KCNH2−/−) hearts. An excessive inflammatory response plays a positive role in regenerating cell proliferation and dedifferentiation. However, highly expressed inflammatory cytokines (i.e. TNF-α, IL-1β) in inflammatory cells induce apoptotic genes (caspase family) and result in aberrant apoptosis directly or indirectly, which impairs heart regenerative ability (i.e. negative role of inflammation). C. The anti-inflammatory drug dexamethasone (Dex) and pro-kinetic agent cisapride (Cis) attenuate the excessive inflammation, downregulating the apoptotic genes (caspase), upregulating the anti-apoptotic genes (bcl-2) and reducing the aberrant apoptotic regenerating cells thereby promoting heart regeneration. Anti-inflammatory drugs (Dex and MMP inhibitor) downregulate inflammation and reduce apoptosis, which contributes to improved heart regenerative ability in bre mutant.
30 dpc compared with vehicle control (Fig. 4A and B).

It is known that a high concentration of dexamethasone and MMP 9/MMP 13 inhibitor I can suppress the inflammation response, inhibit cell proliferation and the regenerative process [4,5,8]. Thus, we tested the effect of dexamethasone, MMP 9/MMP 13 inhibitor I, and cisapride on regenerative cells in the injured heart. Our data revealed that cisapride didn’t affect the TnnT+/PONA+ cardiomyocytes and mitosis cells in the injured area, and the MMP 9/MMP 13 inhibitor I slightly, but not significantly, reduced the proliferating cells. However, the treatment with dexamethasone significantly reduced the proliferating cardiomyocytes and mitotic cells (Fig. 4C-F). Furthermore, the number of proliferating cells in the dexamethasone-treated bré mutant was similar with that in AB zebrafish (Fig. 2H-K), suggesting that dexamethasone (100 μm) could regulate cell proliferation in bré mutant. In addition, dexamethasone, MMP 9/MMP 13 inhibitor I and cisapride did not show significant reduction in the expression of α-SMA in bré mutant (Fig. 4G).

Thus, our results indicate that dexamethasone, MMP 9/MMP 13 inhibitor I and cisapride to a large extent promote fibrotic scar degradation in the heart of bré mutant zebrafish, albeit affecting cell proliferation.

4. Discussion

Recent studies have reported the essential role of inflammation for cardiac regeneration, but excessive or inadequate inflammatory response can impair this process [6,30]. The mechanisms underlying inflammation-mediated regeneration remain incompletely understood. Here, we showed that in bré mutant zebrafish, excessive inflammation occurred after cryoinjury and acted as a double-edged sword during heart regeneration, inducing aberrant apoptosis and causing impairment in the heart regeneration, as well as eliciting more regenerative cells. Immune therapy with a mild dosage of dexamethasone, MMP inhibitors or cisapride promoted cardiac regeneration by reducing apoptosis (Fig. 5). Thus, our study reinforces the notion that heart regeneration is a finely orchestrated process regulated by inflammation, which determines fibrotic scar-based repair and complete cardiomyocyte-based regeneration.

Genetic mutated KCNH2 in bré mutant results in life-threatening long QT syndrome cardiac arrhythmia. Recently, accumulating data indicate that inflammation and immunity may be also involved in long QT syndrome [31]. In the present study we revealed that bré mutant displays impaired heart regenerative capability; and an overactive immune response following cardiac cryoinjury. Here, inflammatory genes (i.e. Ifn-γ, Il-1β, Tnf-a, L-plastin, Mmp13a etc.) were markedly upregulated in the heart and an excess number of leukocytes accumulated in the injured area of the heart. The excessive inflammation might further aggravate cardiac arrhythmogenesis in bré mutant. Interestingly, it has been reported that the anti-inflammatory glucocorticoid dexamethasone can suppress the LQTS phenotype [10]. Additionally, it is known that KCNH2 and inflammatory cytokine TNF receptor-1 are co-expressed on the cytoplasmic membrane in various cancer cells [32]. Furthermore, our results provide evidence that inflammation induces excessive inflammatory cells in the injured site in bré mutant. These results indicate that KCNH2 might be involved in the inflammation response after tissue injury. Nevertheless, the mechanisms of KCNH2 regulating inflammation in the heart are not well understood, justifying further pursuits in this field.

Inflammation exhibits a seemingly paradoxical function to wound healing and regeneration [33]. There is an increasing body of literature indicating contradictory findings where inflammation is both harmful and essential for tissue regeneration [1-3]. Scientific research and clinical data point out that the numbers of cytokines and inflammatory cells accumulated in the injured heart exert cytotoxic action on cardiomyocytes, thereby promoting fibrotic scar formation, cardiac remodeling and worsening cardiac function [4,21]; X. [34,35]. In our study, we found that the level of expression of inflammatory cytokine genes is extremely high, and associated with aberrant apoptosis and larger fibrotic scar in bré mutant heart after injury. This finding is consistent with reports that an overactive immune response to cardiac injury in adult mice can negatively affect regeneration by promoting fibrotic scar formation [4,21]. However, recent studies have indicated that neonatal mice lose their heart regenerative ability after cardiac injury when inflammatory cells (i.e. macrophages) are reduced [33,36]. Pertinent to the present study, the robust regenerative capability in zebrafish can be impaired by inhibiting of the inflammatory response [5,22,26,37]. Furthermore, previous studies have found that inflammatory cells play a crucial role in distinct regenerative periods. In these studies, depletion or inhibition of macrophages in the early inflammatory phase, but not the tissue outgrowth stage, tissue remodeling or scar resolution stage, impair tissue regeneration in the salamander and zebrafish [8,37,38]. In addition, more and more studies revealed that inflammation can promote heart regeneration in zebrafish, medaka, and mouse via stimulating cardiomyocyte proliferation [7,33,39]. Lastly, our findings in bré mutant further confirm that inflammation can enhance cardiomyocyte proliferation, which is consistent with previous studies. These results suggest that regeneration is well regulated and controlled by inflammation, and disturbances in the inflammatory response can lead to aberrant tissue regeneration [1].

Inflammatory cytokines, such as TNF-α, induce apoptosis as well as promote cell proliferation [32,40]. Here, our data indicate that inflammation plays both a positive and negative role in heart regeneration in bré mutant zebrafish. Our transcriptome analysis identified 53 immune-related genes markedly upregulated in the heart of bré mutant compared with AB zebrafish. In addition to these genes, tnf-a and il-1β were considered to be involved in apoptosis and impaired tissue regeneration [1,6], which was also supported by our data (Fig. 1A). It is also reported that gene families such as the caspases and the B cell lymphoma (bcl)-2 family are involved in the process of apoptosis, which is at least partly regulated by tnf-a signals [41]. Intriguingly, our qRT-PCR and RNA-seq data showed that the level of expression of caspases b, caspase 3a, caspases 7-like, caspase 8 and bcl-2-like was markedly higher in bré mutant heart compared with AB zebrafish at 4 dpc (Fig. 2C, Table S7). In zebrafish, it is reported that caspase 3 and caspase 8 mediate the apoptosis process [42,43], and caspase b was also involved in activating IL-1β, which further regulates apoptosis in zebrafish [6,44]. The aberrant apoptosis might result in the impaired heart regeneration in bré mutant zebrafish. This is consistent with our RNA-seq data which demonstrated that the expression level of muscle-related genes was lower in bré mutant heart than in AB zebrafish and the scar degradation was also slower in bré mutant zebrafish (Figs. 1A and 2D, S5). However, regenerative cells, such as proliferating cardiomyocyte, mitotic cells, embryonic cardiomyocytes, and α-SMA positive cells, were markedly induced in the heart of bré mutant zebrafish after cryoinjury (Fig. 2H-L, S1). Recent data has revealed that leukocytes play a key role in promoting cell proliferation, angiogenesis and other regenerative processes [1,7,45]. Therefore, these results suggest that regenerative cells in bré mutant heart might directly or indirectly be associated with the substantial leukocyte accumulation in the injured area.

We demonstrated that a mild dosage of glucocorticoid (dexamethasone) and MMP9/MMP13 inhibitor I reduce the number of leukocyte and apoptotic cells in the injured area of the heart and promote cardiac regeneration in bré mutant zebrafish (Figs. 3 and 4). Our study (Fig. 3E) is consistent with previous research reporting that glucocorticoids can suppress the expression of tnf-a and il-1β, and hence reduce apoptosis [6]. Furthermore, we found that dexamethasone increased the expression of the anti-apoptotic gene bel-2-l in the heart of bré mutant. However, dexamethasone not only reduced apoptosis, but suppressed cell proliferation (Fig. 4C-F). Moreover, the number of proliferating cells in dexamethasone-treated bré mutant fish was reduced to a similar level as AB zebrafish. Additionally, the MMP9/ MMP13 inhibitor treated group had slightly reduced proliferating cells...
in the injured area, although this change did not reach significance (Fig. 4C–F). Here, we report for the first time, cisapride can reduce the inflammatory response and apoptosis, without affecting cell proliferation. Therefore, we speculated that dexamethasone and cisapride could rescue the heart regenerative ability in *br* mutant zebrafish by modulating the expression of *tra-a, il-1β*, and anti-apoptotic gene *bcl-2-lke*, hence reducing aberrant apoptosis (Fig. 5). Nevertheless, treating normal zebrafish with glucocorticoids or MMP9/MMP13 inhibitor also has been known to impair tissue regeneration capability [6,8,26], suggesting that in fish, thereby rescuing the heart regeneration ability after cardiac damage. The present findings provide evidence that KCHN2 is involved in inflammation in zebrafish, in addition to potential immune therapeutic regimens for human genetic LQT patients who suffer from MI.

5. Conclusions

In the present study, we report for the first time, anti-inflammatory and pro-kinetic drugs can protect regenerative cells from aberrant apoptosis and promote fibrotic scar degradation in *br* mutant zebrafish, thereby rescuing the heart regeneration ability after cardiac damage. The present findings provide evidence that KCHN2 is involved in inflammation in zebrafish, in addition to potential immune therapeutic regimens for human genetic LQT patients who suffer from MI.

Conflicts of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Acknowledgments

The work described in this paper was substantially supported by a grant from Research Grants Council of the Hong Kong Special Administrative Region, China (CityU 160213). This work was also supported by the CityU Strategic Grants 7004592 and 7004806. The equipment described in this paper was substantially supported by a grant from Research Grants Council of the Hong Kong Special Administrative Region, China (Grants 8730037, C1025-14E). The authors would like to thank sister Yee of our laboratory for fish maintenance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fsi.2019.03.058.

References

