Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

Liu, Tengyu; Li, Zijun; Chan, Mannin; Chan, Chak K.

Published in:
Atmospheric Chemistry and Physics

Published: 20/06/2017

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.5194/acp-17-7333-2017

Publication details:
https://doi.org/10.5194/acp-17-7333-2017

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 03/08/2019
Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

Tengyu Liu¹, Zijun Li², ManNin Chan²,³, and Chak K. Chan¹

¹School of Energy and Environment, City University of Hong Kong, Hong Kong, China
²Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong, China
³The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China

Correspondence to: Chak K. Chan (Chak.K.Chan@cityu.edu.hk)

Received: 29 January 2017 – Discussion started: 31 January 2017
Revised: 25 April 2017 – Accepted: 15 May 2017 – Published: 20 June 2017

Abstract. Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19–20°C and 65–70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1.7×10^{11} molecules cm$^{-3}$ s$^{-1}$, was 1.35±0.30 µg min$^{-1}$, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM$_{2.5}$) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R^2 ranging from 0.74 to 0.88. The average carbon oxidation state (O_{SOA}) of SOA was -1.51 to -0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.

1 Introduction

Organic aerosol (OA) is an important component of atmospheric particulate matter (PM), which influences air quality, climate and human health (Hallquist et al., 2009). A significant fraction of OA is secondary organic aerosol (SOA) (Zhang et al., 2007), formed via the oxidation of volatile organic compounds (VOCs) (Hallquist et al., 2009), and semi-volatile organic compounds (SVOCs and IVOCs) that can come from the evaporation of primary organic aerosol (POA) were found to form substantial SOA (Robinson et al., 2007; Donahue et al., 2009). Therefore, any source of POA may be associated with the production of SOA.

Cooking-related organic aerosol (COA), thought to be primary in origin, contributed 10–34.6 % of the total OA in urban areas (Allan et al., 2010; Sun et al., 2011, 2012; Ge et al., 2012; Mohr et al., 2012; Crippa et al., 2013; Lee et al., 2015). Lee et al. (2015) found that COA even dominated the contribution to POA at roadside sites in the commercial and shopping area of Mongkok in Hong Kong. Cooking may be a large source of SOA in urban areas, yet the formation of SOA from cooking remains poorly understood. Kaltsonoudis et al. (2016) observed that the oxygen to carbon ratio ($O:C$) of OA from meat charbroiling increased from 0.09 to 0.30 after a few hours of chemical aging. The aged aerosol mass spectra have similarities with ambient COA factors in two
Atmos. Chem. Phys., 17, 7333–7344, 2017

7334

H. Schauer et al. (2002) estimated that cooking seed oils might contribute a significant fraction of lighter n-alkanoic acids such as nonanoic acid in the atmosphere. The VOCs emitted from heated cooking oils were dominated by aldehydes (Klein et al., 2016a), which were suggested to be potential SOA precursors (Chacon-Madrid et al., 2010). Despite these previous efforts, there are still no available data regarding SOA formation from heated cooking oils.

The objective of this study is to characterize SOA formation from gas-phase emissions of heated cooking oils. The magnitude and composition of the SOA formed from gas-phase emissions of heated cooking oils were evaluated and have been discussed for the first time in this paper.

2 Materials and methods

2.1 PAM chamber

SOA formation from gas-phase emissions of five different heated cooking oils was investigated in a potential aerosol mass (PAM) chamber, which has been described in detail elsewhere (Kang et al., 2007; Lambe et al., 2011a; Lambe et al., 2015). Briefly, a PAM chamber is a continuous-flow stainless steel cylindrical reactor using high and controlled levels of oxidants to oxidize precursor gases to produce SOA. The volume is approximately 19 L (length 60 cm, diameter 20 cm). High OH exposures were produced through the photolysis of ozone irradiated by a UV lamp (λ = 254 nm) in the presence of water vapor. Ozone was produced by an ozone generator (1000BT-12, ENALY, Japan) via irradiation of pure O2. The OH concentration was controlled by the flow rate of ozone in the PAM chamber, which was approximately 40 ppm prior to dilution. The ozone concentration in the PAM reactor was adjusted to five different levels, ranging from 0.4 to 2.7 ppm. The total flow rate in the PAM chamber was set at 3 L min−1 by a mass flow controller, resulting in residence time of 380 s. The corresponding upper limit of OH exposure at these operating conditions was 1.7 × 1011 molecules cm−3 s, which is equivalent to 1.3 days of atmospheric oxidation, assuming an ambient OH concentration of 1.5 × 106 molecules cm−3 (Mao et al., 2009). The upper limit of OH exposure was determined by measuring the decay of SO2 (model T100, TAPI Inc, USA), following previous procedures (Kang et al., 2007; Lambe et al., 2011a). Peng et al. (2016) found that non-OH chemistry, especially reactions with O3, may play a role in the oxidation flow reactors for consumption of VOCs. According to Klein et al. (2016a), emissions of VOCs from heating cooking oils were dominated by saturated and unsaturated aldehydes. In this study, the ratio of O3 exposure to OH exposure ranged from 1.5 × 103 to 1.9 × 105, relatively lower than tropospheric values (Schmidt et al., 2014). At this O3exp / OHexp, ozonolysis of saturated and unsaturated aldehydes was negligible since the ratios of their ozonolysis rate constants to OH rate constants were in the range of 10−9 to 10−7 (Grosjean et al., 1993; Atkinson and Arey, 2003). Thus reactions of VOCs with O3 played a negligible role in this study. Before and after each experiment, the PAM reactor was cleaned by exposure to a high concentration of OH until the mass concentration of background particles was less than 5 µg m−3.

The PAM chamber was designed with a large radius and a small surface-to-volume ratio to minimize wall effects. The transmission efficiency for particles at a mean mobility diameter (Dm) larger than 150 nm was greater than 80 % (Lambe et al., 2011a). The wall loss of particles was considered to be small, as the particles larger than 150 nm accounted for greater than 70 % of the aerosol mass (Fig. 1). Transmission efficiency of gases in the PAM chamber indicates that vapor wall losses in the PAM chamber are negligible (Lambe et al., 2011a).
2.2 Experimental conditions

A schematic of the experimental setup is shown in Fig. 2. The tested vegetable oils, purchased from a local supermarket, included canola (rapeseed), corn, sunflower, peanut and olive oils. For each experiment, 30 mL of vegetable oil was heated at approximately 220 °C for 20 min in a 500 mL Pyrex bottle on an electric heating plate. Note that visible smoke was observed during heating of olive oil, possibly because the temperature was above the smoke point of olive oil. This high temperature may result in increased emissions of large aldehydes from olive oil, but may not significantly change the relative composition of emissions from other oils with higher smoke points (Klein et al., 2016a). Prior to introduction to the PAM chamber, particles from the heated oil emissions were removed using a Teflon filter. An unheated 2 m Teflon tube was used as the transfer line. The residence time in the transfer line was less than 2 s, resulting in wall losses of VOCs less than 5 % according to Liu et al. (2015). After 10 min of heating, the UV lamp was turned on and the emissions were exposed to high OH levels for approximately 1 h. Once the UV lamp was turned off, the PAM reactor was flushed continuously using pure N₂ and O₂ until the aerosol mass was below 3 µg m⁻³. Then the experiment was repeated at another OH level. The RH and temperature of the PAM outflow were measured continuously (HMP 110, Vaisala Inc., Finland) and stabilized at 65–70 % and 19–20 °C, respectively. The adjustment of RH was achieved by passing the pure N₂ and O₂ through water bubblers. Blank experiments were conducted in the absence of cooking oils under similar conditions to quantify the amount of aerosols formed from matrix gas when exposed to different OH levels.

POA emitted from heated cooking oils was also characterized in this study. For each test, 30 mL of vegetable oil was heated to 240 °C for 2 min in a pan on an induction cooker. The emissions, after passing through a mixing chamber of 36 L, were first diluted by a Dekati diluter (DI-1000, Dekati Ltd., Finland) by a factor of approximately 8. Then 0.15 L min⁻¹ of the total diluted flow was introduced to the PAM chamber, achieving a final dilution ratio of approximately 160. No ozone was introduced to the PAM chamber during measurement, and the UV lamp was off. Temperature and RH were similar to those of the SOA formation experiments.

A scanning mobility particle sizer (SMPS, TSI Incorporated, USA, classifier model 3082, CPC model 3775) was used to measure particle number concentrations and size distributions. Particle size ranged from 15 to 661 nm. An aerosol density of 1.4 g cm⁻³ was assumed to estimate the SOA mass from the particle volume concentration (Zhang et al., 2005). For the SOA formation experiments, the contribution from background organic aerosols was subtracted from the total organic aerosols. The maximum concentration of background organic aerosols was 8.4 µg m⁻³, almost negligible compared with the dozens to several hundreds of µg m⁻³ of SOA formed in this study. The organic aerosol composition was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS, abbreviated as AMS hereafter, Aerodyne Research Incorporated, USA) (DeCarlo et al., 2006). A silica gel diffusion dryer was connected to the sampling line to remove water. The residence time in the dryer was approximately 8 s, sufficient to reduce the RH to less than 30 %. The instrument was operated in the high-sensitivity V mode and high-resolution W mode alternating every 1 min. The toolkit Squirrel 1.57I and Pika 1.16I were used to analyze the AMS data. The molar ratios of hydrogen to carbon (H:C) and oxygen to carbon (O:C) were determined with the improved-ambient method (Canagaratna et al., 2015). The ionization efficiency of AMS was calibrated using 300 nm ammonium nitrate particles. The particle-free matrix air, obtained by passing the air through a HEPA filter, was measured for at least 20 min.
before each experiment to determine the signals from major gases. The collection efficiency (CE) was corrected by comparing AMS mass concentrations to concurrent SMPS mass concentrations, following the methods of Gordon et al. (2014) and Liu et al. (2015). The value of CE varied from 0.38 to 0.78 in this study. Note that particles were not dried prior to SMPS measurements, which might lead to an overestimate of SOA mass due to the uptake of water by organics. Lambe et al. (2011b) investigated the cloud condensation nuclei activity of PAM-generated SOA and found that the hygroscopicity parameter κ_{org} was linearly correlated with O:C ratios. Based on their κ_{org}–O:C relationship, we estimated an upper limit of κ_{org} to be 0.089 in this study. The overestimate of SOA mass due to water uptake were thus determined to be less than 18% (Petters and Kreidenweis, 2007; Pajunoja et al., 2015).

2.3 SOA production rate

The SOA production rate (PR) was expressed as micrograms (µg) of SOA produced per minute (min), calculated using the following equation, similar to calculation of emissions rates of primary particles from cooking (Klein et al., 2016a):

$$\text{PR} = [\text{SOA}] \times \text{DR} \times F,$$

where $[\text{SOA}]$ is the SOA concentration in µg m$^{-3}$, DR is the dilution ratio and F is the flow rate in m3 min$^{-1}$ of the carrier gas. All gas-phase emissions from heated cooking oils were assumed to be transported into the PAM chamber.

Emission rates are commonly used to normalize PM emissions from cooking activities (Torkmahalleh et al., 2012; Gao et al., 2013; Klein et al., 2016a, b). Here, the adoption of SOA PR, similar to emission rates, facilitates the normalization of SOA production from cooking and direct comparison of the amount of primary emitted and secondary formed particles. Though SOA yields were not determined due to the lack of VOC concentrations, we believe that SOA PR is a useful metric for the estimation of SOA production from cooking and can be used for comparison among different studies. Note that PR is highly related to the experimental condition, especially OH exposure and temperature of the cooking oil.

3 Results and discussion

3.1 SOA formation

In Fig. 3, we plot the time series of RH, ozone and organic aerosol concentrations during the aging of gas-phase emissions from heated peanut oil. As described above, the ozone concentration prior to dilution was stable at approximately 40 ppm. The pulse of RH was caused by disconnection of the introduction line when changing the Teflon filter. During the initial 10 min of heating, the mass concentration of organics was close to the detection limit of the instrument, indicating that POA emissions were thoroughly removed by the Teflon filter. During these periods of experiments where OH radicals were not present, we found that ozone chemistry had a negligible influence on SOA formation in this study. Immediately after oxidation was initiated by turning on the UV lamp, substantial SOA was formed, and its concentration stabilized after about 20 min. The SOA concentration subsequently reported is the average for the steady period.

Figure 4 shows SOA concentration as a function of OH exposure and photochemical age in days during the aging of gas-phase emissions from different heated cooking oils. The OH exposure ranged from 2.7×10^{10} to 1.7×10^{11} molecules cm$^{-3}$ s$^{-1}$, corresponding to 0.2–1.3 days of photochemical age, assuming 24 h average ambient OH concentrations of 1.5×10^6 molecules cm$^{-3}$ (Mao et al., 2009). For all experiments, the SOA concentration almost linearly increased from 41–107 to 320–565 µg m$^{-3}$ as OH exposure increased. This linear increase has also been observed from vehicle exhaust at a similar range of OH exposures (Tkacik et al., 2014). Typically, VOCs are oxidized through functional-
ization reactions to produce less volatile organics that readily condense to form SOA. Upon further oxidation, fragmentation reactions and cleavage of carbon bonds can occur and form more volatile products that reduce SOA levels (Kroll et al., 2009). In this study, functionalization reactions dominated SOA formation as reflected by the increase in SOA concentrations shown in Fig. 4.

The slope of the fitted straight line to the SOA data was calculated to estimate the efficiency of different cooking oils in producing SOA (Table 1). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The slope of sunflower oil was $3.82 \times 10^{-15} \mu g \text{ molecules}^{-1} \text{s}^{-1}$, more than 2 times that of peanut oil. The different slopes might be related to the emission rate and composition of VOCs from various cooking oils. Table 1 presents the type of fat content of the different cooking oils. It should be noted that the organic vapors studied here were not the specific fats present in the raw oils but the thermal breakdown products of fat lipids.

Unsaturated fat accounts for 75–88 % of the total fat content. A multivariate linear regression was used to relate the SOA production efficiency to the fat content of cooking oils. The intercept was set to zero. The resulting equation was $Y = 2.62 \times 10^{-17} X_1 + 4.71 \times 10^{-17} X_2$, where Y is the SOA production efficiency ($\mu g \text{ molecules}^{-1} \text{s}^{-1}$); X_1 and X_2 represent the content of monounsaturated fat (%) and omega-6 fatty acid (%) in cooking oil, respectively. The SOA production efficiency was strongly correlated ($R^2 = 0.97, p < 0.05$) with the content of monounsaturated fat and omega-6 fatty acids. This indicated that the major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. Moreover, omega-6 fatty acids dominated the contribution to SOA production. Omega-6 fatty acids are a family of poly-unsaturated fatty acids that have in common a final carbon–carbon double bond in the n-6 position, counting from the methyl end (Simopoulos, 2002). The peroxyl radical reactions of omega-6 fatty acids might emit long-chain aldehydes (Gardner,
The average SOA PR from gas-phase emissions of the five cooking oils at an OH exposure of 1.7×10^{11} molecules cm$^{-3}$ s was calculated to be 1.35 ± 0.30 µg min$^{-1}$. Torkmehdaleh et al. (2012) found that primary PM$_{2.5}$ emission rates for peanut, canola, corn and olive oils heated at 197°C ranged from 3.7 to 54 mg min$^{-1}$. He et al. (2004) reported a PM$_{2.5}$ emission rate for frying in vegetable oils of 2.68 ± 2.18 mg min$^{-1}$. The SOA PR determined in this study was negligible compared with primary PM$_{2.5}$ emission rates for heated cooking oils and frying in vegetable oils. However, our results may underestimate SOA production from cooking under real-world conditions. First, recent studies have demonstrated that the oxidation of IVOCs and SVOCs evaporated from POA could produce significant SOA (Donahue et al., 2006; Jimenez et al., 2009). In this study, POA from heated cooking oils was filtered. SVOCs and IVOCs might not evaporate from the filter given that they might be at saturation as the aerosol was cooled after the emissions. Second, emissions of SOA precursors will be enhanced when cooking food compared with heating cooking oils alone. For instance, long-chain aldehyde emissions from frying processes can be 10 times those of heated oil (Klein et al., 2016a). Large amounts of monoterpenes will be emitted when frying vegetables or cooking with herbs and spices (Klein et al., 2016a, b; Liu et al., 2017). These enhanced emitted precursors may significantly enhance SOA production. Finally, laboratory and tunnel studies indicate that SOA production from typical precursors and vehicle exhaust peaks at OH exposures higher than 5.0×10^{11} molecules cm$^{-3}$ s (Tkacik et al., 2014; Lambe et al., 2015). The relatively lower OH exposures in this study compared with typical conditions in the atmosphere may lead to the underestimation of cooking SOA.

3.2 Mass spectra of POA and SOA

Figure 5 shows high-resolution mass spectra of POA and SOA at an OH exposure of 2.7×10^{10} molecules cm$^{-3}$ s from heated canola oil. Other oils have similar mass spectra, as reflected in the good correlations shown in Table 2. The mass concentration of POA was approximately 35 µg m$^{-3}$ for canola oil. The prominent peaks in POA from canola oil were m/z 41 and 55, followed by m/z 29 and 43. The m/z 41, 43 and 55 were dominated by C$_3$H$_7^+$, C$_4$H$_7^+$ and C$_6$H$_7^+$ ion series, consistent with the previous observation by Allan et al. (2010). The m/z 29 was instead dominated by ion CHO$^+$, which can be used as a tracer for organic compounds with alcohol and carboxyl functional groups, as a result of thermal decomposition of the oils (Lee et al., 2012). For the SOA mass spectra, the dominating peaks were m/z 28 and 29, followed by m/z 43 and 44. The m/z 28, 29, 43 and 44 were dominated by CO$^+$, CHO$^+$, C$_2$H$_5$O$^+$ and CO$_2^+$, respectively. For all cooking oils, the mass fractions of m/z 28 and 44 in SOA were higher, while the mass fractions of m/z 55 and 57 in SOA were lower than those of the corresponding POA. The increase in mass fractions of the oxygen-containing ions in SOA mass spectra indicated the formation of oxidized organic aerosols.

The correlation coefficients (R^2) between POA and SOA unit mass resolution (UMR) spectra of heated oil and COA resolved by positive matrix factorization (PMF) analysis (Lee et al., 2015) were calculated and summarized in Table 2 to evaluate their similarities. The POA mass spectra between different cooking oils exhibited strong correlations ($R^2 > 0.97$) and agreed well with the ambient COA factor obtained at roadside sites in the commercial and shopping area of Mongkok in Hong Kong (Lee et al., 2015). The SOA mass spectra between different cooking oils displayed good correlations ($R^2 > 0.94$), suggesting a high degree of similarity. The mass spectra of cooking SOA also greatly resemble POA and field-derived COA in ambient air, with R^2 ranging from 0.74 to 0.88. Kaltsonoudis et al. (2016) also observed that the ambient COA factor in two major Greek cities in spring and summer strongly resembled the aged SOA from meat charbroiling in a smog chamber.

Figure 5. Mass spectra of POA and SOA at an OH exposure of 2.7×10^{10} molecules cm$^{-3}$ s from heated canola oil.
Table 2. Correlation coefficients (R^2) between POA and SOA UMR mass spectra and ambient COA resolved by PMF.

<table>
<thead>
<tr>
<th></th>
<th>CA P</th>
<th>CN P</th>
<th>SR P</th>
<th>PT P</th>
<th>OE P</th>
<th>CA S</th>
<th>CN S</th>
<th>SR S</th>
<th>PT S</th>
<th>OE S</th>
<th>COA b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA P</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.85</td>
<td>0.87</td>
<td>0.91</td>
<td>0.93</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>CN P</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.89</td>
<td>0.90</td>
<td>0.94</td>
<td>0.96</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>SR P</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.85</td>
<td>0.87</td>
<td>0.91</td>
<td>0.93</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>PT P</td>
<td>0.98</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>0.98</td>
<td>0.83</td>
<td>0.85</td>
<td>0.90</td>
<td>0.93</td>
<td>0.93</td>
<td>0.96</td>
</tr>
<tr>
<td>OE P</td>
<td>0.97</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>1.00</td>
<td>0.86</td>
<td>0.88</td>
<td>0.93</td>
<td>0.95</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>CA S</td>
<td>0.85</td>
<td>0.89</td>
<td>0.85</td>
<td>0.83</td>
<td>0.86</td>
<td>1.00</td>
<td>0.95</td>
<td>0.98</td>
<td>0.96</td>
<td>0.94</td>
<td>0.74</td>
</tr>
<tr>
<td>CN S</td>
<td>0.87</td>
<td>0.90</td>
<td>0.87</td>
<td>0.85</td>
<td>0.88</td>
<td>0.95</td>
<td>1.00</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.77</td>
</tr>
<tr>
<td>SR S</td>
<td>0.91</td>
<td>0.94</td>
<td>0.91</td>
<td>0.90</td>
<td>0.93</td>
<td>0.98</td>
<td>0.95</td>
<td>1.00</td>
<td>0.99</td>
<td>0.97</td>
<td>0.83</td>
</tr>
<tr>
<td>PT S</td>
<td>0.93</td>
<td>0.96</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.87</td>
</tr>
<tr>
<td>OE S</td>
<td>0.94</td>
<td>0.96</td>
<td>0.94</td>
<td>0.93</td>
<td>0.96</td>
<td>0.94</td>
<td>0.96</td>
<td>0.97</td>
<td>0.99</td>
<td>1.00</td>
<td>0.88</td>
</tr>
</tbody>
</table>

a CA, CN, SR, PT and OE refer to canola, corn, sunflower, peanut and olive oil. P and S represent POA and SOA, respectively.
b Lee et al. (2015).

Figure 6. Fractions of total organic signal at m/z 43 (f_{43}) vs. m/z (f_{44}) from SOA data in this work together with the triangle plot of Ng et al. (2010). SOA data from gasoline (Presto et al., 2014; Liu et al., 2015) and diesel (Presto et al., 2014) vehicle exhaust measured in smog chamber studies are shown. Data from this work and the literature are colored according to OH exposure. Ambient SV-OOA and LV-OOA regions are adapted from Ng et al. (2010).

smog chamber, together with the triangle defined by Ng et al. (2010) based on the analysis of ambient AMS data. The ambient low-volatility oxygenated OA (LV-OOA) and semi-volatile OOA (SV-OOA) factors fall in the upper and lower regions of the triangle, respectively. Ng et al. (2010) proposed that aging would converge the f_{43} and f_{44} toward the triangle apex ($f_{43} = 0.02, f_{44} = 0.30$). In this study, the f_{43} and f_{44} ranged from 0.06 to 0.10 and from 0.05 to 0.07, respectively; they mainly lie in the lower portion of the SV-OOA region. As shown in Fig. 6, SOA from gasoline and diesel vehicle exhaust at a similar range of OH exposures had f_{44} values of 0.11–0.12. Compared with vehicle exhaust, SOA formed from gas-phase emissions of heated cooking oils was less oxidized. The potential SOA precursors from heated cooking oils might be long-chain aldehydes, which are less volatile than SOA precursors such as aromatics and long-chain alkanes from vehicle exhaust. Generally, the presence of additional methylene and aldehyde reduce compound vapor pressure by factors of 3 and 22, respectively (Pankow and Asher, 2008). For example, the vapor pressure of n-tridecanal is approximately 14% of that of n-tridecane at 25°C, as predicted by the group-contribution model (Pankow and Asher, 2008). A single polar moiety of first-generation products from long-chain aldehydes will have low enough volatility to condense, while more volatile aromatics and long-chain alkanes require more functionalization to form...
The OS_c of POA were in the range of 0.14 to 0.23 and −1.61 to −1.44, respectively, comparable to those of POA from meat charbroiling (Kaltsonoudis et al., 2016). As shown in Fig. 7, for each cooking oil, the O:C and OS_c of SOA displayed similar trends, initially decreasing rapidly and then increasing slowly or leveling off (for canola oil only). In this study, the increased SOA mass loadings led to the rapid decrease in the oxidation degree when the OH exposure increased from 2.7 × 10¹⁰ to 6.4 × 10¹⁰ molecules cm^{−3} s^{−1}. As OH exposure and the resulting OA mass loadings further increase, even less oxidized and more volatile organics partition into the particle phase and thus decrease the oxidation degree (Donahue et al., 2006). The difference in O:C for different cooking oils at the same OH exposure may be attributed to the differences in gas-phase SOA precursors. In general, the O:C ratios of SOA formed from gas-phase emissions of heated cooking oils ranged from 0.24 to 0.46 at OH exposures of 2.7 × 10¹⁰ to 1.7 × 10¹¹ molecules cm^{−3} s^{−1}. The OS_c of cooking SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA, OS_c = −1.69) and SV-OOA (OS_c = −0.57) corrected by the improved-ambient method (Canagaratna et al., 2015). As suggested by Canagaratna et al. (2015), the OS_c is more robust than the <i>f</i>₄₃ / <i>f</i>₄₄ relationship for evaluating the oxidation degree of organic aerosols, as the former has been estimated based on the full spectra.

In Fig. 8 we plot the H:C and O:C molar ratios of POA and SOA from heated cooking oils on a Van Krevelen diagram. The cooking data fell along a line with a slope of approximately 0, suggesting the chemistry of SOA formation in this study was alcohol/peroxide formation (Heald et al., 2010; Ng et al., 2011). This slope is different from ambient OA data of −0.8 determined by the improved-ambient method (Heald et al., 2010). It is also different from vehicle exhaust data, with slopes ranging from −0.59 to −0.36 (Presto et al., 2014; Liu et al., 2015).

4 Conclusions

Formation of SOA from gas-phase emissions of heated cooking oils was investigated in a PAM chamber at OH exposures of 2.7 × 10¹⁰ to 1.7 × 10¹¹ molecules cm^{−3} s^{−1}. The OS_c and <i>f</i>₄₃−<i>f</i>₄₄ relationship indicated that the SOA formed was lightly oxidized. The mass spectra of SOA highly resembled POA from heated cooking oils and COA factors in ambient air. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. Considering that animal fats such as pork and chicken fat are also abundant in monounsaturated fat and omega-6 fatty acids, gas-phase emissions from cooking animal fat might also produce SOA. It is important to note that the reported SOA data only related to gas-phase emissions from heated cooking oils. The large amounts of POA emitted from cooking oils may also form SOA after photo-

Figure 7. Evolution of (a) oxygen to carbon (O:C) molar ratios and (b) average carbon oxidation state (OS_c) as a function of OH exposure during the aging of gas-phase emissions from different heated cooking oils, with error bars indicating standard error. Data at [OH] = 0 represent POA from cooking oils.

3.2.1 Chemical composition of SOA

The O:C ratio and the estimated average carbon oxidation state (OS_c) (OS_c ≈ 2 × O:C−H:C) (Kroll et al., 2011) can be used to evaluate the degree of oxidation of organic aerosols. Figure 7 shows the evolution of O:C ratios and OS_c of SOA from heated cooking oils as a O:C ratios and OS_c of SOA from heated cooking oils as a function of OH exposure, together with the POA data. The O:C ratios and
Figure 8. Van Krevelen diagram of POA and SOA from different heated cooking oils. Error bars represent the standard deviations (1σ). SOA data are colored by OH exposure. Average carbon oxidation states from Kroll et al. (2011) and functionalization slopes from Heald et al. (2010) are shown for reference.

chemical aging. More work is needed to investigate SOA formation from emissions of cooking oils and food. In addition, gas-phase SOA precursors were not characterized and therefore provided limited information on SOA yields from cooking; we recommend that future work validate our results and perform similar experiments, with gas-phase SOA precursors characterized.

Data availability. The data used in this publication are available to the community and can be accessed by request to the corresponding author.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The work described in this paper was partially sponsored by Project No. 41675117, supported by the National Natural Science Foundation of China, and was partially supported by the Shenzhen Research Institute, City University of Hong Kong. Zijun Li and ManNin Chan are supported by a Direct Grant for Research (4053159), The Chinese University of Hong Kong. Chak K. Chan would like to thank the Hong Kong University of Science and Technology for the use of the AMS.

Edited by: Jason Surratt
Reviewed by: two anonymous referees

References
Gao, J., Cao, C. S., Wang, L., Song, T. H., Zhou, X., Yang, J., and

Katragadda, H. R., Fullana, A., Sidhu, S., and Carbonell-Barrachina, Á. A.; Emissions of volatile aldehydes...

