Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]

Lu, Zhizhou; Wang, Weiqiang; Zhang, Wenfu; Liu, Mulong; Wang, Leiran; Chu, Sai T.; Little, Brent E.; Zhao, Jianguo; Xie, Peng; Wang, Xinyu; Zhao, Wei

Published in:
Optical Materials Express

Published: 01/09/2018

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
Unspecified

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1364/OME.8.002662

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator [Invited]

ZHIZHOU LU,1,2 WEIQIANG WANG,1,2,5 WENFU ZHANG,1,2,6 MULONG LIU,1,2 LEIRAN WANG,1,2 SAI T. CHU,3 BRENT E. LITTLE,1 JIANGUO ZHAO,4 PENG XIE,1,2 XINYU WANG,1,2 AND WEI ZHAO1,2

1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
4Chair of Micromechanics, Microfluidics/Microactuators, Saarland University, Saarbrücken 66123, Germany
5wwq@opt.ac.cn
6wfuzhang@opt.ac.cn

Abstract: High index doped silica glass exhibiting low loss property and CMOS compatibility is a promising material in nonlinear optics. In this work, mode-locked soliton crystals (SCs) are demonstrated in a high-Q (>10^6) micro-ring resonator (MRR) made in this platform. The asymmetric spectra of SCs are numerically investigated and interpreted as the combined impact of Raman self-frequency shift (RSFS) and the wavelength-dependent loss. By precisely comparing the experimental and simulated spectra based on the perturbed Lugiato-Lefever equation (LLE), the Raman shock time is inferred to be at the range of 2.5 fs to 2.7 fs for this material.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (190.4380) Nonlinear optics, four-wave mixing; (190.3270) Kerr effect; (190.4360) Nonlinear optics, devices; (190.4400) Nonlinear optics, materials; (140.3945) Microcavities.

References and links
1. Introduction

Benefiting from the breakthrough in theory and fabrication processing over the last two decades [1,2], optical micro-cavities with Q-factor as high as 10^{11} have been demonstrated [3]. The photon-storage time in such cavities corresponds to hundreds of microseconds, which induces ultra-high optical intensity [4] due to constructive interference inside the cavities and stimulates intriguing nonlinear effects in such system. For the centrosymmetric materials such as Si, Si_3N_4, and SiO_2, the 3rd order nonlinear effect including self-phase modulation (SPM), cross-phase modulation (XPM) and four wave mixing (FWM) [5], are introduced due to the cavity-power-driven field-enhancement effect [6]. These nonlinear effects have been exploited in chirality [7,8], Raman laser [9] and frequency conversion [10]. Recently, researchers’ interests have been attracted by another iconic nonlinear phenomena in high-Q micro-cavity, that is, the on-chip soliton micro-comb [11–17], which has been successfully utilized in microwave generation [18], ranging measurement [19,20], dual-comb spectroscopy [21,22], and coherent communication [23,24] with unprecedented precision. Theoretically, dissipative cavity solitons (DCSs) rely on the double balance between anomalous cavity dispersion and Kerr nonlinearity on the one hand, the cavity loss and parametric gain on the other. Meanwhile, the high peak power of such solitons will stimulate high order nonlinear effect, such as Raman effect, which has been demonstrated in former DCS generation experiment [25,26], where DCSs experience the so-called Raman self-frequency shift (RSFS), resulting in asymmetric power-spectra distribution about the pump. Phenomenally, the maximum of spectra is red-shifted away from the pump by a certain amount, which is mainly dependent on the pulse-width, group velocity dispersion (GVD) and material-associated Raman shock time [25].

In this paper, the RSFS effect on soliton crystals (SCs) is numerically and experimentally investigated. The SCs are generated in a high-Q micro-ring resonator (MRR) fabricated on a high-index doped silica glass platform, using thermal-controlled method [27], the spectra exhibiting obvious asymmetric characteristic are obtained. Such asymmetry is caused by the combined contribution from wavelength-dependent loss and RSFS. In order to precisely determine the Raman shock time for this material, the loss term is measured and taken into account in our theoretical model based on the perturbed Lugliato-Lefever equation (LLE). By comparing couples of experimental and simulated optical spectra, Raman shock time between 2.5 fs to 2.7 fs is inferred for this material. This result contributes to the understanding of Kerr frequency combs in the solitons regimes and is relevant to improve the accuracy of numerical simulations.

2. Devices

Figure 1(a) shows the schematic of the add-drop type MRR made of high index doped silica glass ($n=1.6$) using SiO_2 as cladding. The MRR is fabricated by CMOS-compatible process, the core films are deposited using plasma enhanced chemical vapor deposition (PECVD), and then the device patterns are printed in photoresist using an in-line stepper and reactive ion etching to produce exceptional low sidewall roughness on the core layer [28–31]. The radius of the MRR is $592.1\ \mu\text{m}$, corresponding to the free spectral range (FSR) of $\sim 49 \ \text{GHz}$, and the gap between the MRR and the bus waveguide is $1\ \mu\text{m}$. Figure 1(b) is the scanning electron microscope (SEM) image of the cross section of the MRR, the ring and the bus waveguide are both $2\ \mu\text{m} \times 3 \ \mu\text{m}$. A mode transformer (MT) structure is added to in-out port of the MRR and the coupling loss is $\sim 2.5 \ \text{dB}$ per facet at 1550 nm. Figure 1(c) shows the measured transmission loss of the waveguide and the calculated fundamental transverse magnetic (TM) optical field which is expected to be the SC-forming mode is shown in Fig. 1(d).
Next, the major parameters of the MRR are calculated and analyzed based on the aforementioned parameters. Typically, the deviation of cavity resonance from equidistant spacing can be expressed as [32,33]:

$$D_{int} = \omega_\mu - \omega_\nu = D_1 \mu - D_2 \mu^2 + \frac{1}{3!} D_3 \mu^3 + \sum_{k>3} \frac{D_k \mu^k}{k!}$$ \hspace{1cm} (1)

where ω_μ and ω_ν are resonant and pump angular frequency, μ is the relative mode order. $D_1/(2\pi)$ corresponds to the FSR, $D_2 = -c/n_0 D_1^{-1} \beta_2$ illustrates the variation between adjacent FSRs, β_2 is GVD value, c and n_0 are light velocity in vacuum and linear refractive index of this material, respectively. D_1 is third order dispersion (TOD) parameter and $D_k (k>3)$ is higher order dispersion (HOD) coefficients. For our device, $D_2/(2\pi)$ is 175 kHz, the D_{int} curve shown in Fig. 2(a) exhibiting perfect parabolic feature suggests that TOD and HOD can be neglected in this work. Mode interaction between SC-forming mode and interaction-expected mode 2nd transverse electric (TE) mode ($90 \times$ FSR) is also observed from the calculations, which is roughly consistent with previous experimental demonstrations ($102 \times$ FSR) [27] and the difference between calculation and experiment is expected to be attributed to thermal effects. Another essential parameter used in subsequent simulation is the nonlinear coefficient: $\gamma = \omega_\nu n_2 (c A_{eff})$, where $n_2 = 1.15 \times 10^{-19}$ m2/W [28] is the nonlinear refractive index, $A_{eff} = \frac{[\int |E(x,y)|^2 dx dy]^2}{[\int |E(x,y)|^4 dx dy]}$ is effective mode area with $E(x,y)$ of mode field distribution. The effective mode area, loaded Q, FSR and group index are simulated and presented in Fig. 2(c) and Fig. 2(d), respectively.
3. Experiments and results

The experimental set-up is shown in Fig. 3. The pump laser is an external cavity diode laser (ECDL) with the linewidth of ~100 kHz at a fixed wavelength of 1556.3 nm and boosted by a commercial erbium doped fiber amplifier (EDFA). A fiber polarization controller (FPC) controls the polarization states inside the resonator. The monolithic MRR is pigtailed with a standard fiber array and packaged in a 14-pins butterfly package [27]. The optical spectrum analyzer (OSA) and power meter directly monitors the spectrum and energy inside the MRR. A high precision thermoelectric cooler (TEC) is used to tune the resonance wavelength using the thermo-optic effect.

With proper polarization state and pump power (~31.7 dBm in the experiment), primary comb (Turing pattern), chaotic state comb (modulation instability comb) and mode-locked SCs are generated in sequence, as shown in Fig. 4. The case of SC with one vacancy [27] is presented in Fig. 4(c), which presents asymmetric spectrum about the pump from the sech² fit line shown in orange. Apparently, the amount of shift could be measured by the difference of center frequency of SC spectrum and the pump frequency. However, for most of SC spectra,
it is not precise to determine the central wavelength because the defects caused by special distributions of soliton ensembles keeps the spectrum bumpy and uneven. Fortunately, the power difference between symmetric “primary like” comb line with dominant power can be taken as a reference to speculate RSFS effects. Next, the Raman shock time will be analyzed through comparing the theoretical and experimental spectra.

4. Model and simulation

The theoretical model to research on the frequency-shift is based on the damped, driven LLE equation augmented by mode-crossing and Raman terms [34,35]:

\[
(\frac{\partial}{\partial t} + \alpha + \kappa) + i \frac{\beta L}{2} \frac{\partial^2}{\partial \tau^2} + \frac{i}{\delta} E - \sqrt{\kappa} E_0 - i \gamma L \int R(\tau') |E(t, \tau - \tau')|^2 d\tau' = 0
\]

where \(E(t, \tau)\) is the complex slowly varying amplitude of the intra-cavity field with \(t\) and \(\tau\) correspond to slow and fast time evolution of the field, respectively. \(t_R\) and \(\alpha\) are round-trip time and intra-cavity losses shown in Fig. 1(c). \(\kappa\) corresponds to power transmission coefficient of the input coupler. \(\delta\) is the cavity detuning between pump and corresponding resonance. \(E_0\) is the external pump term and \(L\) is the total cavity length. \(R(\tau)\) is the nonlinear response of high index doped silica, including Kerr and Raman response [5]. Since the soliton pulse in our experiment is measured to be \(\sim 120\) fs [27] (simulated under the perfect SC case), which is larger than \(100\) fs [5], thus the Taylor expansion and necessary normalized condition [25] can be applied to simplify the last term in Eq. (2) as:

\[
i \gamma L(\frac{|E|^2}{\partial \tau} + \tau_R \frac{\partial |E|^2}{\partial \tau})
\]

where the first term is Kerr effect, and the second term containing Raman shock time \(\tau_R\) causes the RSFS. Mode-crossing effect is included by adding a phase shift \(\Phi_m = a(\omega - \omega_0)\) to the perturbed modes [36], where \(a\) reflects the strength of the interaction and \(\omega_0\) is the interaction position which locates at around 1517 nm (102 × FSR away from the pump) [27], so the interaction is imposed on the 102nd comb line away from the pump wavelength. Numerical simulation is realized via split-step Fourier algorithm [37] and fourth-order Runge-Kutta method [38]. The wavelength-dependent loss effects are taken into account within the Fourier term during simulation.

In order to stably simulate SCs of our experiment, Gaussian pulse distributed in specific positions determined by experimental spectra is chosen to be the initial condition [39]. During the simulation, there are two critical variables, \(\delta\) and \(\tau_R\). After extensive calculations, \(\delta\) between 0.015 and 0.0188, \(\tau_R\) ranging from 2.3 fs to 3.1 fs are effective and consistent with the experimental spectra. Values beyond these ranges are proved to be either unstable or inconsistent with the experiments, for example, Figs. 5(a) and 5(b), Figs. 5(c) and 5(d) show the unstable (\(\delta = 0.018, \tau_R = 2.55\) fs) and stable crystal (\(\delta = 0.013, \tau_R = 2.55\) fs) evolution in time and frequency domain with aforementioned parameters, respectively.
Fig. 5. SC evolution within different condition. Unstable state in (a) time domain and (b) frequency domain with $\delta = 0.013$ and $\tau_R = 2.55$ fs. Stable state in (c-d) shows robust evolution with $\delta = 0.018$ and $\tau_R = 2.55$ fs.

Figure 6 shows the simulation results of 3 different SCs. For each spectrum, different values of τ_R and δ are used to numerically calculate the perturbed LLE, then the power difference between mode $+34$ and -34 (first pair of symmetric “prime-comb” modes about the pump) are accumulated. The right column of Fig. 6 presents the power difference variation with different combinations of τ_R and δ, the horizontal dashed lines are their corresponding experimental power difference values. The simulated curve is not effective unless it has intersection points with the dashed line. Note that τ_R and δ beyond the calculation ranges are unstable in the simulation. Figure 6(c) shows that when 2.5 fs $< \tau_R < 3.1$ fs, there are intersections between simulated and experimental spectra. While the range of τ_R is 2.3 fs to 2.5 fs for Fig. 6(f) and 2.3 fs to 2.9 fs for Fig. 6(i). According to these results, 2.5 fs $< \tau_R < 2.7$ fs is effective for all the three cases. In further simulation, $\tau_R = 2.55$ fs is selected for Figs. 6(b), 6(e) and 6(h), with varying δ values between the range mentioned above, all the simulated spectra are in good agreement with experiments.

Fig. 6. Experimental (first column) and Simulated spectra (the middle column) with Raman interaction, $\tau_R = 2.55$ fs. (a)-(c) Experimental and simulated SC spectra with “one-gap-peak” feature, experimental power difference is 3.4 dB, $\delta = 0.0182$. (d-f) Spectra present “two-peaks”, power difference is 3.11 dB, $\delta = 0.015$. (g-i) Spectra with “Stack” feature with power difference of 3.31 dB and δ of 0.0170. Horizontal dashed lines in (c), (f) and (i) are the corresponding power difference from experiments.
5. Conclusion

In conclusion, the RSFS of SCs in a high-Q MRR made of high index doped silica is demonstrated. It is precisely researched that the strongly wavelength-dependent loss and RSFS jointly contribute to the asymmetric spectra about the pump. Raman shock time at the range of 2.5 fs to 2.7 fs is inferred by comparing the experiments and the simulations. This work not only improves the modeling accuracy for this material, but also gives reasonable prediction for RSFS on single-soliton that will be researched in the near future.

Funding

National Natural Science Foundation of China (Grant No. 61635013; 61675231; 61475188; and 61705257) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600).

Acknowledgments

The authors thank T. T. Yu, L. Wang and P. X. Chen for help in the device design.