Novel ETFDH mutations in four cases of riboflavin responsive multiple acyl-CoA dehydrogenase deficiency

Fan, Xin; Xie, Bobo; Zou, Jun; Luo, Jingsi; Qin, Zailong; D’Gama, Alissa M.; Shi, Jiahai; Yi, Shang; Yang, Qi; Wang, Jin; Luo, Shiyu; Chen, Shaok; Agrawal, Pankaj B.; Li, Qifei; Shen, Yiping

Published in:
Molecular Genetics and Metabolism Reports

Published: 01/09/2018

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY-NC-ND

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.ymgmr.2018.05.007

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher’s definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher’s copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Novel ETFDH mutations in four cases of riboflavin responsive multiple acyl-CoA dehydrogenase deficiency

Xin Fana,1, Bobby Xiea,1, Jun Zoub, Jingsi Luoc, Zailong Qinc, Alissa M. D’Gamac,d, Jiuhai Shia, Shang Yia, Qi Yanga, Jin Wanga, Shiyou Luoa, Shaoke Chena, Pankaj B. Agrawalc,d,f, Qifei Lic,d,f,1, Yiping Shenc,d,f,1

a Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People’s Republic of China
b Department of Gastroenterology, The Second Affiliated Hospital, Guangxi Medical University, Nanning 530000, People’s Republic of China
c Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
d The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
e Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
f Division of Neonatal Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA

A R T I C L E I N F O

Keywords:
Multiple acyl-CoA dehydrogenase deficiency
Glutaric aciduria II
ETFDH
ETF-QO
Riboflavin

A B S T R A C T

Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism caused by mutations in EFTA, EFTB, or ETFDH. Many MADD patients are responsive to treatment with riboflavin, termed riboflavin-responsive MADD (RR-MADD). Here, we report three novel mutations and one previously reported mutation in ETFDH in four RR-MADD patients who presented at various ages, and characterize the corresponding changes in ETF-QO protein structure. Clinicians should consider MADD in the differential diagnosis when patients present with muscle weakness and biochemical abnormalities. Gene testing plays a critical role in confirming the diagnosis of MADD, and may not only prevent patients from invasive testing, but also allow timely initiation of riboflavin treatment. The novel variants in ETFDH and the corresponding clinical features reported here enrich the allelic heterogeneity of RR-MADD and provide insight into genotype-phenotype relationships.

1. Introduction

Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric aciduria II (GAI, OMIM #231680), is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism. MADD is highly clinically heterogeneous, and has been categorized into three types: neonatal onset with congenital abnormalities (Type I), neonatal onset without congenital abnormalities (Type II), and late-onset (Type III) [1–3]. MADD results from a defect in either electron transfer flavoprotein (ETF, encoded by the alpha ETF (ETFA) and beta ETF (ETFB) genes) or ETF-ubiquinone oxidoreductase (ETF-QO, encoded by the ETF dehydrogenase (ETFDH) gene) [4, 5].

Types I and II are severe and typically fatal, characterized by non-ketotic hypoglycemia, metabolic acidosis, and accumulation and excretion of metabolites, while Type III is milder and more variable, characterized by recurrent episodes of hypoglycemia, metabolic

Acknowledgments: ASTM, aspartate aminotransferase; CK, creatine kinase; ETF, electron transfer flavoprotein; ETF-QO, ETF-ubiquinone oxidoreductase; GAI, glutaric aciduria II; LDH, lactate dehydrogenase; MADD, multiple acyl-CoA dehydrogenase deficiency; RR-MADD, riboflavin-responsive MADD; WES, whole exome sequencing

Abbreviations: AST, aspartate aminotransferase; CK, creatine kinase; ETF, electron transfer flavoprotein; ETF-QO, ETF-ubiquinone oxidoreductase; GAI, glutaric aciduria II; LDH, lactate dehydrogenase; MADD, multiple acyl-CoA dehydrogenase deficiency; RR-MADD, riboflavin-responsive MADD; WES, whole exome sequencing

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.ymgmr.2018.05.007
Received 18 April 2018; Received in revised form 30 May 2018; Accepted 30 May 2018

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
was approved by the local ethics committee.

2.2. Mutation analysis

Genomic DNA was extracted from peripheral blood using standard protocols (Qiagen, Hilden, Germany). Direct sequencing of ETFα, ETFβ, and ETFDH was performed for two patients, and no mutations were identified in ETFα or ETFβ. Whole exome sequencing (WES) was performed for the other two patients. Sequence capture, enrichment, and elution were performed using an Illumina TruSeq Exome Enrichment kit (Illumina, San Diego, CA, USA) according to the manufacturer’s protocols, and sequencing was performed on an Illumina HiSeq2000 (Illumina). Sequence alignment and variant calling against the reference human genome (GRCh37) were performed using BWA and the Genome Analysis Toolkit. Variant interpretation of WES data was performed using Ingenuity Variant Analysis pipeline (Ingenuity, Redwood City, CA, USA). SIFT, Polyphen2, and MutationTaster were used for in silico analysis of candidate variants. Deleterious variants were confirmed by Sanger sequencing.

2.3. Structure prediction of ETF-QO

Human and porcine ETF-QO proteins share high amino acid sequence identity (95%), thus the porcine ETF-QO is an excellent structural template. The structural model of the human ETF-QO was made based on the crystallographic structure of porcine ETF-QO [10] (PDB: 2GMH) by homology modeling (Swiss-Model).

3. Results

3.1. Clinical presentations

All four patients were clinically diagnosed with MADD, and changes in blood acylcarnitines, urine organic acids, and muscle enzymes are listed in Table 1.

Patients 1 and 2 are siblings and carry the same mutations but presented at different ages. Patient 2 was diagnosed with newborn screening and presented ill at 10 days old with elevated levels of acylcarnitines, consistent with MADD. Gas chromatography-mass spectrometry revealed a significant increase of 3-hydroxyglutaric acid. In addition, she had elevated levels of creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Patient 2 was initially treated with 195 mg riboflavin daily, and her symptoms largely resolved after taking the medication for one month. Then, her parents stopped giving her the medication, and she presented with severe acidosis and convulsions. She was then treated with 300 mg riboflavin daily, which she has continued, and she remains symptom-free. Patient 1 was tested at 7 years old following her sibling’s diagnosis. She has had intermittent mild symptoms, which her parents believed were viral upper respiratory infections. Levels of acylcarnitines, ethylmalonic acid, and decanediolactic acid were elevated, although her muscle enzymes were within the normal range. Patient 1 was initially treated with 150 mg riboflavin daily. Once improved and lab values normalized, Patient 1 was intermittently treated (her parents stop giving her the medication), and she is now 9 years old and remains symptom-free.

Patient 3, a 27-year old male, was previously healthy with no family history of neuromuscular disease. He presented with pneumonia and reported muscle weakness for 8 months, and was found to have elevated levels of acylcarnitines, urine organic acids, and serum ammonia, as well as fatty liver detected by ultrasound. He was treated with 2 tablets of vitamin B composite (B1: 3.0 mg; riboflavin: 1.5 mg; B6: 0.2 mg) three times a day, and his muscle strength and lab values gradually recovered to normal levels.

Patient 4, a 30-day old male infant, presented with non-ketotic hypoglycemia, metabolic acidosis, electrolyte disturbances, and increased muscle enzymes. His clinical symptoms improved for 20 days...

Table 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Sex</th>
<th>Onset</th>
<th>Blood acylcarnitine spectrum (μmol/L)</th>
<th>Urine organic acids spectrum</th>
<th>CK (U/L)</th>
<th>LDH (U/L)</th>
<th>AST (U/L)</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>7 do</td>
<td>↓: C0 (8.38), C2 (6.46), C3 (0.47)</td>
<td>3-Hydroxypropionate-2 (82.29)</td>
<td>193</td>
<td>234</td>
<td>34</td>
<td>c.524G > A (p.R175H), c.229G > A (p.G77S)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>10 do</td>
<td>↑: C4 (1.03), C5 (0.58), C6 (0.96), C8 (1.50), C10 (2.27, C10:1 (0.55, C12 (0.51), C14 (0.86), C16 (0.58)</td>
<td>3-Hydroxypropionate-2 (82.29)</td>
<td>205</td>
<td>311</td>
<td>82</td>
<td>c.524G > A (p.R175H), c.229G > A (p.G77S)</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>27 yo</td>
<td>↓: C0 (0.92), C3 (0.42), C4 (0.24), C5 (0.11), C6 (0.37)</td>
<td>Lactate-2 (54.39), Ethylmalonic acid-2 (10.33), 3-Hydroxyglutaric acid (7.03), Glycerate-3 (15.11), 4-Hydroxyphenyllactate-2 (28.34)</td>
<td>976</td>
<td>853</td>
<td>323</td>
<td>c.1157G > A (p.G286D), c.1450T > C (p.W484R)</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>30 do</td>
<td>↑: C0 (5.37), C2 (0.62), C3 (0.42), C4 (0.24), C5 (0.11), C6 (0.37)</td>
<td>Ethylmalonic acid-2 (10.33), 3-Hydroxyglutaric acid (7.03), 4-Hydroxyphenyllactate-2 (28.34), Vanillic acid-2 (4.16), Vanillyllic acid-2 (2.53), Palmitic acid-1 (253.27), Palmitic acid-1 (303.27)</td>
<td>976</td>
<td>853</td>
<td>323</td>
<td>c.1157G > A (p.G286D), c.1450T > C (p.W484R)</td>
</tr>
</tbody>
</table>

1. above normal level; ↓: below normal level; yo: years old; do: days old.
2. Upper limit of normal: CK 200 U/L, LDH 245 U/L, and AST 40 U/L.

Table 1

<p>| Blood acylcarnitines, urine organic acids, and muscle enzymes in the four MADD patients. |
|---|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Sex</th>
<th>Onset</th>
<th>Blood acylcarnitine spectrum (μmol/L)</th>
<th>Urine organic acids spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>7 do</td>
<td>↓: C0 (8.38), C2 (6.46), C3 (0.47)</td>
<td>3-Hydroxypropionate-2 (82.29)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>10 do</td>
<td>↑: C4 (1.03), C5 (0.58), C6 (0.96), C8 (1.50), C10 (2.27, C10:1 (0.55, C12 (0.51), C14 (0.86), C16 (0.58)</td>
<td>3-Hydroxypropionate-2 (82.29)</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>27 yo</td>
<td>↓: C0 (0.92), C3 (0.42), C4 (0.24), C5 (0.11), C6 (0.37)</td>
<td>Lactate-2 (54.39), Ethylmalonic acid-2 (10.33), 3-Hydroxyglutaric acid (7.03), Glycerate-3 (15.11), 4-Hydroxyphenyllactate-2 (28.34)</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>30 do</td>
<td>↑: C0 (5.37), C2 (0.62), C3 (0.42), C4 (0.24), C5 (0.11), C6 (0.37)</td>
<td>Ethylmalonic acid-2 (10.33), 3-Hydroxyglutaric acid (7.03), 4-Hydroxyphenyllactate-2 (28.34), Vanillic acid-2 (4.16), Vanillyllic acid-2 (2.53), Palmitic acid-1 (253.27), Palmitic acid-1 (303.27)</td>
</tr>
</tbody>
</table>
after riboflavin treatment (treatment details unknown). At 3 months old, Patient 4 was hospitalized for pneumonia, and passed away due to sepsis. The sister of Patient 4 (genotype unknown) passed away at 3 months old due to encephalitis.

3.2. Mutation analysis

Sequencing studies identified four missense mutations in the three families, three of which are novel (hg19; Chr4:159603400 G > A, c.229G > A, c.1157G > A, c.1450T > C) detected in this study marked with asterisks. b) Segregation of heterozygous missense mutations in Family 1 (F1), Family 2 (F2) and Family 3 (F3). c) Population frequencies and in silico predictions for detected mutations. d) Depiction of the DNA and protein changes, with the mutations marked with red arrows and the corresponding amino acid changes in red. e) The four missense mutations are conserved across species. D: Damaging. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Protein structure analysis

ETF-QO, encoded by ETDH, is integrated in the inner mitochondrial membrane and its crystal structure is comprised of three domains, as depicted in Fig. 2: FAD domain (FAD shown in green), 4Fe4S cluster domain (4Fe4S shown in magenta), and UQ-binding domain (UQ shown in red). The four variants are shown as cyan spheres (Fig. 2a). In the model, R175, G77, and G386 are located near the FAD binding site, while W484 is located near the UQ binding site. The mutants R175H, G77S, and G386D likely affect the binding affinity of ETFDH to FAD.
In this study, we report three novel compound heterozygous mutations in ETFDH in four patients with RR-MADD from three unrelated families. The diagnosis of MADD was primarily based on biochemical data (increased levels of acylcarnitines and urine organic acids), and confirmed by ETFDH mutation analysis. Although RR-MADD is a treatable disease, it is rare and its diagnosis is difficult due to high clinical heterogeneity. MADD patients often present with fluctuating muscle weakness, vomiting, hypoglycemia, metabolic acidosis, encephalopathy, and hepatopathy [12–14]. However, many muscle disorders (such as inflammatory myopathies, metabolic myopathy, and progressive muscular dystrophy) also present with muscle weakness. Thus, MADD may be misdiagnosed as a different type of lipid storage myopathy, a glycogen storage disease, progressive muscular dystrophy, or other muscle disease [15]. Muscle biopsy has traditionally been diagnostically important to differentiate MADD from other muscle diseases, as muscle biopsy showing accumulation of lipid droplets in muscle fibers in combination with the biochemical pattern of acylcarnitines and urine organic acids can confirm the MADD diagnosis [16].

Currently, gene testing plays an important role in MADD diagnosis, and may prevent more invasive diagnostic testing, such as muscle biopsy. Given the current knowledge of the genetic etiology underlying MADD, we suggest a stepwise approach for patients suspected to have MADD involving targeted sequencing of ETFA, ETFB, and ETFDH followed by WES if targeted sequencing is negative. In addition to cost effectiveness, this approach would limit incidental findings such as of variants of unknown significance, which are difficult to interpret and may cause anxiety for the patients and their families. For example, a recent report of a patient with MADD used WES to identify a compound heterozygous mutation in ETFDH as well as a predicted deleterious novel variant in ACOT11, which was of unclear relevance to the phenotype [17].

Early diagnosis is critical because timely riboflavin treatment is effective in many cases. Riboflavin, the precursor of the coenzyme FAD, has been reported to act as a molecular chaperone that promotes the in vitro folding and steady state levels of misfolded ETF-QO proteins in early stages and stabilizes folding intermediates or membrane-inserted proteins in later stages [18, 19]. Riboflavin treatment was given to all four patients in this study, and they showed dramatic improvement in clinical symptoms after riboflavin treatment. Patient 4 was re-hospitalized for pneumonia, and was treated late in his disease course. He suffered from severe liver injury, which was considered to be irreversible, and led to the family's decision to withdraw support.

Although over 80 mutations in ETFDH have been reported worldwide, the same mutation is rarely found in different populations [20]. Hot spot mutations have been identified in Asian populations, with c.250G > A (p.A84T) the most common mutation in southern China [21], and c.770A > G (p.G362R) and c.1227A > C (p.L409F) the most common mutations in northern China [9, 22–24]. Indeed, ETFDH mutations may be ethno-specific. In the four RR-MADD patients from southern China in this study, we identified three novel mutations and one previously reported mutation in ETFDH [11]. Of note, Patients 1 and 2 carried the same mutations but presented at different times and with different clinical manifestations, suggesting the role of modifier genes or the environment. Further studies are needed to elucidate these differences.

ETFDH mutations can be classified into two groups: mutations affecting protein folding and assembly or mutations affecting enzymatic activity [25]. Three of the identified mutations in this study are located in the FAD binding domain (p.Arg175His, p.Gly77Ser, and p.Gly386Asp), and one is located in the UQ binding domain (p.Trp484Arg). Most of the previously reported ETFDH mutations are
located in the FAD binding domain, suggesting that this region is a sensitive functional hot spot [26]. Riboflavin treatment has been sug-
gested to promote FAD binding to ETF-QO mutants with variants in the FAD domain by affecting the kinetics and/or thermodynamics to sta-
bilize the mutant conformations [27].

In summary, we report four variants including three novel likely pathogenic mutations in ETFDH, enriching the allelic heterogeneity of MADD. A high index of suspicion for MADD is necessary if a patient presents with symptoms including muscle weakness, and it should be included in the differential diagnosis. Gene analysis is critical to con-
firm the diagnosis of MADD, and may prevent invasive testing, such as muscle biopsy, and allow timely initiation of e

Acknowledgments

The authors thank the patients and their families involved in this study. AMD was supported by the NIGMS (grant number T32GM007753). PBA was supported by the NIH/NIAMS (grant number 1R01AR068429-01) and the NICHD/NHGRI/NIH (grant number U19HD077671). The funding sources did not play any role in study design, data collection, analysis, or interpretation, writing of the manuscript, or the decision to submit the manuscript for publication. The authors have no conflicts of interest to report.

References

[1] S.I. Goodman, F.E. Freemam, Glutaric aciduria type II (multiple acyl-CoA dehy-
relationship between ETF/ETFDH genotype and phenotype in patients with mul-
F.H. Hansen, Biochemical studies in a patient with defects in the metabolism of
acyl-CoA and sarcosine: another possible case of glutaric aciduria type II, J. Inherit.
[5] Z. Svignonova, A.W. Mohsen, J. Vockley, Acyl-CoA dehydrogenases: dynamic his-
deficiency: essentially absent fatty acid oxidation activity in proband but normal
379-380.
transfer flavoprotein-ubiquinoneoxidoreductase: glutaric aciduria type II, in: C.R.
Scrifer, A.L. Beaudet, W.S. Sly, D. Valle (Eds.), The Metabolic and Molecular
B. Merinero, F.E. Freeman, M.W. Beresford, J.C. Dean, N. Cornelius, O. Andersen,
A. Oldfors, E. Holme, N. Gregersen, D.M. Turnbull, A.A. Morris, ETFDH mutations
as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation de-
\[9] B. Wen, T. Dai, W. Li, Y. Zhao, S. Liu, C. Zhang, H. Li, J. Wu, D. Li, C. Yan,
Riboflavin-responsive lipid-storage myopathy caused by ETFDH gene mutations, J.
[10] J. Zhang, F.E. Freeman, J.J. Kim, Structure of electron transfer flavoprotein-ubi-
quinone oxidoreductase and electron transfer to the mitochondrial ubiquinone
High frequency of ETFDH c.250G > A mutation in Taiwanese patients with late-
301 (1979) 1405–1409.
Hirano, The myopathic form of coenzyme Q10 deficiency is caused by mutations in
the electron-transfer-flavinprotein dehy-
L.H. Chen, Y.J. Jeng, I. Nishino, ETFDH mutations, CoQ10 levels, and respiratory
chain activities in patients with riboflavin-responsive multiple acyl-CoA dehy-
exactly is wrong with my muscles? Glutaric aciduria type II presenting in a teen-
[16] C. Angelini, D. Tavian, S. Missaglia, Heterogeneous phenotypes in lipid storage
acyl-CoA dehydrogenase deficiency disease and ETFDH mutations benefits from
R.K. Olsen, Molecular mechanisms of riboflavin responsiveness in patients with
ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency, Hum. Mol.
[20] Z. Zhao, P. Jin, F. Li, H. Li, X. Chen, H. Wang, A case of late-onset riboflavin re-
sponsive multiple acyl-CoA dehydrogenase deficiency (MADD) with a novel mu-
unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency
(MADD) in southern China confirmed the most common ETFDH mutation and high
[22] J. Xi, B. Wen, J. Lin, W. Zhu, S. Luo, C. Zhao, D. Li, P. Lin, J. Lu, C. Yan, Clinical
features and ETFDH mutation spectrum in a cohort of 90 Chinese patients with late-
399–404.
multiple acyl-CoA dehydrogenase deficiency in 13 cases, and a literature review
[24] Y. Wang, D.H. Zhao, D.J. Hong, Z.X. Wang, Y. Yuan, Hot spot mutations in electron
transfer flavoprotein dehydrogenase gene of riboflavin responsive lipid storage
[25] M. Nagao, K. Tanaka, FAD-dependent regulation of transcription, translation, post-
translational processing, and post-processing stability of various mitochondrial
acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of
Martinho, C.M. Gomes, Mutations at the flavin binding site of ETF-QO yield a
1284–1292.
Y.J. Jeng, Computational analysis of a novel mutation in ETFDH gene highlights its
long-range effects on the FAD-binding motif, BMC Struct. Biol. 11 (2011) 43.