Interactive Sketch-Based Normal Map Generation with Deep Neural Networks

Su, Wanchao; Du, Dong; Yang, Xin; Zhou, Shizhe; Fu, Hongbo

Published in:
Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D)

Published: 01/05/2018

Document Version:
Post-print, also known as Accepted Author Manuscript, Peer-reviewed or Author Final version

License:
Unspecified

Publication record in CityU Scholars:
Go to record

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Interactive Sketch-Based Normal Map Generation with Deep Neural Networks

Wanchao Su1, Dong Du2,1, Xin Yang3,1, Shizhe Zhou4,1, and Hongbo Fu1
1 City University of Hong Kong
2 University of Science and Technology of China
3 Dalian University of Technology
4 Hunan University

ABSTRACT

High-quality normal maps are important intermediates for representing complex shapes. In this paper, we propose an interactive system for generating normal maps with the help of deep learning techniques. Utilizing the Generative Adversarial Network (GAN) framework, our method produces high quality normal maps with sketch inputs. In addition, we further enhance the interactivity of our system by incorporating user-specified normals at selected points. Our method generates high quality normal maps in real time. Through comprehensive experiments, we show the effectiveness and robustness of our method. A thorough user study indicates the normal maps generated by our method achieve a lower perceptual difference from the ground truth compared to the alternative methods.

CCS CONCEPTS

• Computing methodologies → Shape representations; Image representations;
• Human-centered computing → User centered design;

KEYWORDS

Sketch, Normal Map, Point Hints, Generative Adversarial Network, Wasserstein Distance

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

i3D, May 2018, Montreal, Quebec, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06...
https://doi.org/10.475/123_4

1 INTRODUCTION

Normal maps take crucial parts in both academic research and commercial production. It is of great importance for many graphics applications such as shape reconstruction, surface editing, texture mapping and realistic surface rendering etc. Surface normal map is high-order differential information of the shape, and thus is not easy for human to infer accurately in the early stage of design process. Moreover, manually designing normal maps is a tedious process and often requires a lot of resource input to get high-quality results. For delicate shapes, manual methods are more problematic especially for novice designers due to the shape complexity. In commercial
production, professionals often spend hours to manually generate a detailed normal map, greatly limiting the production efficiency. Among various representations, the sketch is an intuitive representation for designers to convey design concepts due to its diversity, flexibility, concision and efficiency. It is also a commonly adopted medium to present shapes and other geometric information. Using sketches to convey 3D information in 2D domain is a natural approach that people often employ. Since surface normals are one of the most direct ways to encode 3D information, sketch-to-normal is a predominant interpretation projecting the 2D concept to 3D space, which has been widely used in cartoon shading, digital surface modeling, gaming scene enhancement and so forth. Automatically inferring normal maps from sketches can potentially lead to a useful tool for graphics designers.

In recent years, the research community has witnessed the great capability of deep neural networks in various areas. Deep neural networks have become the common solutions behind many problems, especially for image-related conundrums. Specifically, GAN-based methods have presented a superb performance on a series of image generating problems. More concretely, for guidance-based image generation, GANs show remarkable improvements comparing with conventional deep learning methods. Since both normal information and sketch curves are well represented in the image domain, the inference from sketches to normal maps can be achieved with adoption of deep neural networks.

In this paper we present an interactive generating system, using a deep neural network framework to produce normal maps from input sketches. In our system, the sketch-to-normal map generation problem is treated as an image translation problem, utilizing a GAN-based framework to “translate” a sketch image into a normal map image. To enhance the correspondence between the input sketches and the generated normal maps, we incorporate a conditional GAN framework, which generates and discriminates images with the conditional guidance [20]. A U-net [24] architecture is applied in the Generator to pass a smooth information flow in the generation process, further increasing the pixel-wise correspondence. We employ the Wasserstein distance in our implementation to provide more effective guidance to update the network and reduce the instability of the training process.

Since a sketch is a highly simplified representation of shapes, there might be multiple shape interpretations or possible normal maps for a single input sketch. We rely on users to resolve this ambiguity problem. To achieve this, we provide a user interface so that users can give the normal information at specific points directly in the input sketch to guide normal map generation. Such an interface also enlarges the design choice of normal maps. Our system is efficient and generates the normal maps according to the input sketch and point hints in real time.

We demonstrate the effectiveness of our method on a wide range of comparisons in both quantitative and qualitative experiments. We show the superb capability of our method in generating low-error normal maps by comparing it against alternative methods, including pix2pix [14] and Lun et al.’s [19], evaluated on three categories of data. We validate the user interactivity by progressively increasing the point hints, and evaluate the robustness of our method by an experiment with incremental variations of input sketches. From completely new hand-drawn sketches our method can produce plausible results as well. The user studies further prove the advantages of our method in the perspective of user perception.

2 RELATED WORK

2.1 Sketch-Based Modeling

Sketch-based modeling is an active research area, and many researchers have devoted to this field and presented fruitful works [21]. Specifically, reconstructing 3D shapes or intermediates from sketches has been well studied for years but has still been drawing much attention from both computer graphics and vision researchers due to its ill-posed problem nature and the challenges (e.g., severe shape distortion of sketches especially by users without drawing training).

Traditionally, researchers defined comprehensive rules to turn 2D sketches into 3D shapes. For example, Lumo proposed by Scott F. Johnston [15] approximates lighting on 2D drawings based on silhouettes and internal contours. Wu et al. [31] proposed an interactive system to generate 3D shapes with strokes in the reference shapes. Shao et al. [27] utilized the cross-section lines to infer the 3D normal across the input sketch. Xu et al. [32] introduced an interactive method for designing a normal map from a 2D isophotes image. Sýkora et al. [28] proposed Ink-and-Ray, generating a “2.5D” intermediate for illumination renderings based on hand-drawn images using a set of annotations. Li et al. [18] proposed BendSketch, defining a set of rules to convert 2D strokes into 3D surfaces. Other methods enable the creation of surfaces by exploiting geometric constraints for specific types of line drawings, such as polyhedral scaffolds [26] and curvature flow lines [22]. Different from the above methods, we do not need explicit rules to encode the geometric information into the user input. Instead of generating an inflation-like intermediate shape, the network learns the potential rules from the sketch domain to the normal map domain directly, which preserves more geometric features and generates more complex shapes.

With the development of deep learning techniques, learning-based methods have become effective tools in solving shape synthesis problems. Utilizing the powerful inference capability of the deep neural networks, many problems are solved easily. For example, Lun et al. [19] used multi-view sketches as input to generate depth maps and normal maps, and then combine them to generate a 3D model. Han et al. [19] proposed a system to encode 2D sketch lines to modify the averaged face representation for generation of detailed face models. While our method directly converts the sketches into the normal maps to represent shapes with no assistance of other geometric intermediates. Similar to the normal map generation procedure of Lun et al.’s [19], we aim at generating delicate normal maps to encode detailed geometric information from sketch inputs. However, Lun et al.’s [19] method generated normal map together with depth map and binary mask, which leads to inaccuracies compared to our single-objective normal map generation.

2.2 Image Translation

Traditional image translation effects are achieved by mechanisms based on handcrafted separate local image representation, e.g., image quilting [7], image analogies [11], image denoising [3], etc. Efros and Freeman [7] utilized a texture synthesis model for a corresponding input-output image pair. Hertzmann et al. [11] proposed image
analyses, which are based on a simple multiscale auto-regression to generate filtered images. More advanced approaches use a dataset of input-output example pairs to learn a parametric translation function using generative adversarial networks (GAN) [9].

Mirza and Osindero [20] proposed Conditional GAN (CGAN), adding additional information to the random noise to generate images. Improved GAN by Salimans et al. [25] employed feature matching and minibatch discrimination to improve the output. Iizuka et al. [13] presented a GAN-based method for image completion, and used a Dilated Convolution implementation in their completion network. Recently, three works DualGAN [34], CycleGAN [38] and DiscoGAN [17] were published nearly at the same time, generating images in a bi-directional loop and ensuring the correspondence of images between the two representing domains. Laplacian Pyramid GAN (LAPGAN) [6] and StackGAN [35] proposed to generate images in a hierarchical manner. Using an Encoder-Decoder architecture, Wu et al. [30], Choy et al. [4] and Yan et al. [33] proposed networks to generate 3D shapes in a voxelized representation with a latent space vector encoded from real object images.

For surface normal representations, Eigen and Fergus [8] and Wang et al. [29] proposed convolutional deep networks to solve the surface normal prediction problem as a regression from a real scene photo input. Different from [8] and [29], our method generates normal maps for detailed object models instead of normal maps for coarse scenes surfaces or semantic labels for scene understanding. Isola et al. presented pix2pix [14], providing a general framework for image-to-image translation, which has a very similar objective to our work, converting images from an input representation to the a desired representation. Our method, specifically, convert the input sketches to normal maps with deep neural networks in the manner of image-to-image translation just like pix2pix [14].

3 METHOD
Both normal maps and sketches can be well-represented in 2D images. We thus treat the normal map generation problem as an image-to-image translation process. Essentially, the objective of our image-to-image translation is the distribution transformation problem in two image representation domains, so we choose a GAN framework for solving this problem in our method. In Section 3.1, we introduce the objective function in our method. Our network architecture is elaborated in Section 3.2 and illustrated in Fig. 2. The details of the user interaction are presented in Section 3.3.

3.1 Objective Function
While conditional GAN (CGAN) [20] maps a random noise vector z to an image $y: z \rightarrow y$, we use a conditional GAN that learns a mapping from a sketch image x and a noise vector z, to a normal map y:

$$G: x, z \rightarrow y.$$

Using the conditional setting, the data distributions that generator G and discriminator D try to approximate become conditional distributions [20]. In CGAN, the additional information is concatenated with the random noise vector in the input layer. As to the image translation problems, feeding G with the input image that guides the network to generate the output image is quite intuitive and it is an effective way to incorporate the sketch information in our method. Following [20], we define our objective function as follows:

$$\min_G \max_D V(D,G) = \mathbb{E}_x[p_x,y \sim p_y][\log D(y|x)] + \mathbb{E}_{x \sim p_x, z \sim p_z}[\log (1 - D(G(z)|x))].$$

(2)

Here, x represents the input sketch image, y is the corresponding normal map and z is the random noise vector with the same dimension as the latent space added to Generator G, and here p_x, p_y and p_z represent the sketch domain, normal map domain and random noise distribution, respectively.

In the original GAN, the objective for G is: $E_x[p_y[\log (1 - D(G(z)))]$, but this function causes gradient vanishing. To solve the problem, the loss function can be modified as: $E_x[p_y[\log D(G(z))]$, making G maximize the possibilities of generated samples being identified as real [9]. However, Arjovsky and Bottou [1] proved that optimizing such an objective function is equal to minimizing Kullback-Leibler divergence (KLD) while maximizing Jensen-Shannon divergence (JSD), but in fact, KLD and JSD are of the same direction.

Since JSD and KLD are incapable of measuring the input and output distributions for GAN training, we adopt the settings of WGAN [2], which uses the Wasserstein distance as the measurement of distributions to improve the objective function. The objective function in Eq. 2 then becomes:

$$L = E_x[p_x,y \sim p_y][D(y|x)] - E_y[p_y[D(\tilde{y}|x)] - \lambda_{l1}L_{l1} - \lambda_{mask}L_{mask}.$$

(3)

where \tilde{y} is the generated normal map with respect to the input sketch x from the generated normal map domain p_y. The previous methods of GANs have found that it is beneficial to mix the G loss with a traditional loss, for instance, L_{l1} or L_{l2} loss, etc [23]. Thus, we add another two parts, L_{l1} and L_{mask} (in Eq. 6) to further regulate the training process:

$$L_{l1} = E_y[p_y, y \sim p_y][\|y - \tilde{y}\|_1].$$

(4)

$$\tilde{y} = E_x[p_x, z \sim p_z][D(G(z)|x)].$$

(5)

For user-specified normals at certain points, we add a mask loss to further ensure the input information passes to the output (see more discussions in Section 3.3). Here we choose L_1 loss since L_2 loss encourages blurry results [23] [36]. L_1 loss measures the difference between the generated image and the real image, and mask loss focuses more on the user selected pixels’ distances.

3.2 Network Design
The implementation of our network structure is illustrated in Fig. 2. We first concatenate the sketch image (3-channel RGB image) with a binary point mask (indicating position of user-specified hints, 1-channel image), resulting in $H(\text{height}) \times W(\text{width}) \times 4$ dimensional input, and then feed the stacked input into the Generator (16-layer network). For discriminator (4-layer network), each layer consists of convolution, batch normalization and leak ReLU unit to process the data flow. For generator G, we adopt an Encoder-Decoder architecture [12], which is a common choice for many image-based problems, to first extract the input information and
then infer and output the normal information based on the extracted low-dimensional representation of the input.

The input passes through progressively down-sampling layers to a bottleneck layer, and after we add a random noise vector the up-sampling process begins. All the input information passes through all layers in the network. The encoder component of the generator is similar to the settings of discriminator D, while the decoder layers are composed of ReLU, deconvolution, batch normalization and dropout unit. After the encoder and decoder processing, we add a Tanh function to generate the final results. For the network training, we use the RMSprop optimizer in our implementation.

Although the low-level details differ in input and output, the high-level structure is aligned, and that is taken into consideration when we design the network. For image translation problems, it would be desirable to pass the low-level information across the layers to guide the generation [14]. Thus we incorporate the U-Net [24] in G. Specifically, connections are added after the batch normalization in the generator G between each layer i and layer n−i, where n is the total number of layers in G. Each skip connection simply concatenates all channels at layer i with those at layer n−i.

3.3 User Interaction

To incorporate user point hints, two additional losses are added together with the Wasserstein loss in Eq. 3 to further regulate the generation of the results. Users can directly assign a normal direction to a specific point in the input sketch with our user interface as shown in Fig. 3. The selected point with the normal information (assigned RGB color) is added to the sketch input, and the binary mask at the corresponding point is set to one. In every iteration of the training process, after the initial mask and the sketch are passed through the Generator, we can get a generated pre-result, and then replace the values of the masked positions with the user-specified hints in this pre-result to ensure not only the point positions but also its neighboring area present the specified normal.
To get the corresponding sketch images and normal maps, we adopt
(i.e., non-white pixels), where
views for each model in a circle change for both training and testing
models. We repeat the above process with a altitude angle of
tation upright, then rotate them horizontally and evenly sample 72
for training and 4 for testing). We first make the 3D models' orien-
tated geometry and structure, and are representative man-made
and
suggestive contours [5] proposed by DeCarlo et al. to generate line
4 EXPERIMENTS
Figure 3: Our user interface. Users can select the positions in
the drawing pad (right) and assign desired normals to them
using the normal space (left).

We then smooth the mask with a Gaussian kernel to ensure the
neighboring pixels correspond to the point hints. For the mask
loss, we first differentiate the generated image and real image in L1
manner, then pixel-wisely product (⊙ in Eq. 6 below) the residual
image with the filtered mask, and finally get the average input point
loss of the generated result. The mask loss is formulated as:

\[
I_{\text{mask}} = \frac{1}{\sum_{\text{mask}}E_{y-p_u, y-p_b}[\|y - \bar{y}\|_1 \odot \text{mask}].
\] (6)

To simulate the user-specified normals at certain points in prepara-
tion for the training data, we adopt the method in ideepcolor by
Zhang et al. [37]. For each image, the number of input points is
generated by a geometric distribution with probability \(p = \frac{1}{8} \). Each
point location is sampled from a 2D Gaussian distribution with mean
\(\mu = \frac{1}{2}[H, W]^T \), where \(H \) and \(W \) are the height and width of
the normal map. To ensure the generated normal maps have clear boundaries, we also draw point hints from another geometric
distribution with probability \(p' = \frac{1}{2} \) in the non-normal region (i.e.,
corresponding to white pixels). Adding the point hints not only
enables interactive control of normal maps but also accelerates
the network convergence procedure since the normals at the user-
specified points act as additional guidance in the training stage. An
example of the training data input is illustrated on the left of Fig. 2.

4 EXPERIMENTS
To get the corresponding sketch images and normal maps, we adopt
suggestive contours [5] proposed by DeCarlo et al. to generate line
drawings directly from a 3D model under multiple views and render
its corresponding normal maps. The 3D shapes we use to generate
the training and testing data in the following experiments are Chair
and
FourLegs from Kalogerakis et al. [16] since they have complica-
ted geometry and structure, and are representative man-made
and organic models, respectively. FourLegs contains 24 models (19
for training and 5 for testing) and Chair consists of 20 models (16
for training and 4 for testing). We first make the 3D models’ orien-
tation upright, then rotate them horizontally and evenly sample 72
views for each model in a circle change for both training and testing
models. We repeat the above process with a altitude angle of 25° of
the upright models to enlarge the dataset. In addition, we construct
a dataset of primitive shapes, containing 50 basic 3D shapes (rotate
with altitude angles of 0°, 30° and 60°, resulting in 216 views for
each model since representative perception of the primitive models
are in all directions) for evaluations. The images for training and
testing are 256 × 256 pixels in size. It takes about one day to train
the network (FourLegs: ~ 28hrs; > 1300 images; Chair: ~ 26hrs,
> 1100 images). In the testing phase, it takes 0.025s to generate one
normal map using our network on average.

We illustrate some results of the testing models with the same view
angles as the training data in Fig. 4. We can see that our
method produces results with clear boundaries and smooth normal
textures. We also plot the error maps of the results compared to the
ground truth normal maps. Converting to degree value, our method
achieves loss at pixel-wised 1.9° on average for testing results. The
largest errors often appear in the boundary and the sudden change
of normal within a smooth area.

Using the Chair and FourLegs datasets we compare our method
with two closely related works: pix2pix [14] and Lun et al.’s [19],
since they have similar objectives to ours. We train the pix2pix [14]
models with the same set of sketch-normal map image pairs and
set Lun et al.’s [19] output view number to 1 to generate single
view results instead of multi-view ones. In this experiment, we
incorporate no additional user input for both training and testing.
We compare the test results in a quantitative way: we compare
the difference between the results by different methods against
the ground truth using three metrics: L1, L2 distance and angular
difference. The quantitative comparison results are presented in
Table 1.

Table 1: Errors of different methods. We compare the gen-
erated results by pix2pix [14], Lun et al.’s method [19] and
ours to the ground truth normal maps. The values here are the
averaged pixel-wise differences of the normal areas in the
generated images (256 × 256 pixels).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Loss Type</th>
<th>pix2pix</th>
<th>Lun et al.’s</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>Angular</td>
<td>21.27°</td>
<td>29.765°</td>
<td>11.517°</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>0.235</td>
<td>0.307</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>0.179</td>
<td>0.242</td>
<td>0.105</td>
</tr>
<tr>
<td>Four Legs</td>
<td>Angular</td>
<td>36.253°</td>
<td>35.236°</td>
<td>19.649°</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>0.393</td>
<td>0.379</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>0.294</td>
<td>0.278</td>
<td>0.171</td>
</tr>
</tbody>
</table>

We use the mask of the ground truth to prune the background
(non-normal) area out and calculate the error within the object
(normal) areas, since we care about the accuracy of the normal map
of a sketched object. We first normalize the output normal maps
to unit length and compute the pixel-wise angular difference (in
degrees) against the normalized ground truth normal maps. For
the pixel-wise L1 and L2 losses, we simply calculate the differences
between the corresponding normal vectors of the normal regions
in the manner of L1 and L2 norms, respectively.

Our method uses the Wasserstein distance, leading to lower
errors than pix2pix [14], which uses the original GAN loss. The
Figure 4: Examples of generated normal maps using our method. On the upper right of each group is the sketch input, and on the lower right is the corresponding error map compared to the ground truth. We visualize the angular losses of the generated normal maps, here the red channel corresponds to the error of the generated normal map, and white is zero error.

Wasserstein distance can effectively guide the network to convergence. Lun et al.’s network [19] uses L2 distance as a part of objective loss that produces blurry results, and causes larger errors than ours. In Table 1, we can see that our method outperforms the other two, and has significantly lower errors. Through paired samples t-test for individual averaged error values per image in the test dataset by three methods (same errors reported in Table 1), we confirm our method significantly (“Chair: pix2pix vs. ours: $t = 13.94, p < 0.01$; Lun et al.’s vs. ours: $t = 23.19, p < 0.01$. FourLegs: pix2pix vs. ours: $t = 22.77, p < 0.01$; Lun et al.’s vs. ours: $t = 27.87, p < 0.01$) reduces the error values in the generated normal maps.

To further show the difference between the results by different methods, we visualize the error maps of different methods in a box plot of 144 views of each testing models in the FourLegs dataset in Fig. 5. In addition, we also choose 3 testing error maps to illustrate the different error levels in Fig. 5. From the box plot, we can see that the errors of our method are more concentrated compared to pix2pix [14] and Lun et al.’s [19]. Our method achieves a more subtle difference from the ground truth. While the averaged pixel-wise error values in Table 1 are very small, from the error maps in Fig. 5, we can easily perceive visual difference between the error maps by different methods. Our method achieves better performance in generating smooth normal maps, especially for the complex boundary areas. See the supplemental materials for more generated results using different methods.

We run a validation experiment to test how our method is robust against the changes of view angle. We train the network with

Figure 5: The visualization of average pixel-wise angular loss using different methods. The box plot shows the distribution of error values of different methods. From the test results we choose three views of different testing models as examples to visualize the losses. Error maps marked by different color rectangles are generated by the corresponding methods. The average angular losses are in degrees.

the FourLegs and Chair dataset described above. In the test stage, we experiment on the test models under different altitude angles (from 0° to 330°), and same horizontal sampling scheme as the training data. We also evaluate the cross-class generation capability of our framework by training the network using one dataset or a
Figure 6: Evaluation against different viewpoints and networks with different training data. The solid lines correspond to the test results with Chair data and the dashed lines illustrate the test results of Four Legs data. The blue and red curves represent the results using the networks trained with the Chair and Four Legs datasets, respectively. The green lines denote the results by the network using a combination of Chair and Four Legs as the training data. The normal maps with different color frames are the testing results using the networks with specific rotation angles. The angular loss for each generated result is calculated across the whole image.

We choose two models from the Chair and FourLegs test models. Each of them are rendered with different altitude angles. From the curves in Fig. 6, it can be seen that with the increase of the altitude angles, the error values first go up, after reaching a peak, the values decrease gradually generally for all the three networks trained using different data, due to the used two altitude angles (0° and 25°) for rendering the training data and the periodic nature of angle. In other words, generally if the underlying viewpoints of the input sketches are closer to those used for rendering training data, the inferred normal maps are more accurate. It is expected that using the same category of data for training and testing leads to the best results (the red dashed curve and the blue solid curve).

In contrast, applying the network trained on the cross-class dataset to a test model causes more severe errors, though the reconstructed normal maps still roughly reflect the desired shape (i.e., the red solid line and dashed blue line in Fig. 6). It is encouraging that combing multiple categories of objects in training does not significantly influence the reconstruction accuracy. It can be seen from Fig. 6 that the difference between the red dashed curve and green dashed curve are nearly unnoticeable. The same trend also appears in the blue solid and red solid lines of altitude angles within [0°, 60°]. In the future we plan to train a network by using a large number of object categories as the training data so that the same trained network can be applied to sketches of different categories. Our current experiment results show that the training with multiple object categories does not require additional training time. More testing results are illustrated in the supplementary materials.

To test the effectiveness of the user-specified point hints, we train the network with a random selection scheme of point hints as mentioned in Section 3.3 and evaluate the performance in terms of the number of point hints. The evaluation results are illustrated in the curve chart in Fig. 7 for the averaged accumulated angular losses with respect to the normal areas for each normal map. The blue curve represents the results of normal maps with randomly selected points in the normal map area, and the red line indicates the results of points selected with respect to the top N (the number of input points) largest error points in the corresponding error maps. We get the error maps by comparing the ground truth normal maps to the generated normal maps from the clean sketch image (with no user-specified point hint) input. We anticipate users will specify normals at points with the large errors between the currently generated normal map and a desired normal map in their minds.

The data in Fig. 7 is generated using a test Chair model with 144 different views. The values in Fig. 7 are the average of the 144 views in each group, we can see that generally the loss values in both the red and blue lines go down with the increase of the numbers of point hints, which validates that our system generates better normal maps with the incorporation of user input hints. From the inclinations of the two curves we can know that selecting points with larger loss values more effectively reduce the generated errors. From the shape of the red line, we can see that the error value will remain a relatively constant low level after the large error region is eliminated.

As shown in Fig. 8 we also evaluate our tool with respect to the incremental changes of the input sketch. From the results we
Figure 8: Incremental refinement by adding additional strokes, which lead to additional geometry details in the normal map. The modified strokes and corresponding parts in the generated normal maps are highlighted using red circles.

can see that our system responds well with the modification of the strokes. When we add an additional stroke in the sketch input, the resulting normal map shows the corresponding details. On the contrary, when we remove a stroke from the input sketch, the geometric details will be smoothed out in accordance with sketch modification. More results of the modification in sketches are presented in the supplemental materials.

Figure 9: Test of hand-drawn sketches. Our system can infer reasonable normal maps with completely new sketch inputs.

We also test our method with completely new sketches provided by both experts with drawing skills and novices in sketching in all the three classes of datasets. Several hand-drawn sketches and corresponding generated results are shown in Fig. 9. The normal maps in Fig. 9 preserve the characteristics of the training datasets, showing smooth normal areas and strong correspondence with the input sketches. For completely new sketches, our system can provide plausible results with proper training data. For more results of the freehand drawn sketches, see the supplemental materials.

Figure 10: Plot of user preferences for closest normal map to the ground truth. The blue, red and green boxes represent the distributions of the probabilities of the user choices for pix2pix [14], Lun et al.’s [19] and our method, respectively.

ground truth as reference to test the perceptual losses of the three methods, the task contains 10 sets of randomly selected normal maps from the test models using our method, pix2pix [14] and Lun et al.’s [19]. The results are summarized in Fig 10.

The green box in Fig. 10 shows the highest average proportion among the three methods, achieving 57.5% in identifying the normal maps generated by our method as ones closest to the ground truth. The average proportions for pix2pix and Lun et al.’s method are 17.5% and 25.0%. The t-tests (Ours vs. pix2pix [14]: \(t = 7.22, p < 0.01 \); Ours vs. Lun et al.’s [19]: \(t = 5.96, p < 0.01 \)) proves that our method is statistically better than the other two methods in generating perceptually lower-error normal maps.

Figure 11: Confusing rate for normal maps generated by 4 different methods. The red part in each bar represents the proportion of normal maps identified as real using a specific method, and the blue part denotes the fake rate.

To investigate the accuracy of user perception in interpreting the normal maps, we do another user experiment of normal map confusing rate. In this experiment, we render 10 normal maps randomly selected in the test set for FourLegs with 4 methods: pix2pix [14], Lun et al.’s [19], ours and the ground truth. We request the users to label if a given normal map is real or fake in a random order. The test results are plotted in Fig. 11.
The average confusing rate (ratio of normal map identified as real) of our method is 39.17% compared to 55% of the ground truth. The confusing rates for pix2pix [14] and Lun et al.’s [19] are 30% and 31.7%, respectively. Our method achieves slightly higher confusing rate than the other two methods but still lower than the ground truth. In addition, the participants in this task give a difficulty factor of 7.08 out of 9 (1 means easiest and 9 means hardest), indicating the efforts required in this task are quite high and people find difficult in interpreting the rendered normal maps directly. See the individual user results and testing images in the supplemental materials.

5 DISCUSSIONS

In sum, we have presented an interactive method for normal map generation. The implementation of conditional GAN framework encodes sketch input to the latent representation and decodes the latent space representation into normal map. By adopting the U-Net architecture, our network presents a smooth data transition. The incorporation of the Wasserstein distance provides precise gradient information for the network training process. User-specified point hints allow more direct control of the normal map and effectively eliminate the ambiguity of the sketch representation. The effectiveness of our technique has been demonstrated by qualitative and quantitative experiments. Our method outperforms the alternative solutions based on pix2pix [14] and Lun et al.’s [19].

Figure 12: Less successful cases with corresponding sketches. There are some generated results with obvious visual artifacts: one of the legs of giraffe is disconnected, the back area of the chair is messy, the surface normal of the sphere is not evenly distributed, and in the back region of the hand drawn chair.

Despite the good performance in many cases, our method does not perform well in certain cases. In Fig. 12, we can see that our method produces obvious visual artifacts in complex sketch areas and delicate areas. There are also generated artifacts with patches outside the drawn sketch containing spuriously predicted normals. This is a common phenomenon for GAN-based methods and may be solved by adding more user input hints. For the large area of uneven normals, we can also consider utilizing some post-processing techniques to reduce the artifacts. Furthermore, the testing results are highly dependent on training data, providing relatively worse results for cross-class generation as discussed previously. For the user-specified point hints, since the normal maps are highly structured representations of 3D shapes, users cannot arbitrarily assign a point normal far from the potential candidates.

One of the future directions might be to explore the GAN training techniques to improve the capability of our current networks, reducing the artifacts in the generated results. Since the current method can only generate smooth normal maps, another potential direction can be the post processing technique to add more details in the generated normal maps according to the user design. Our current user interface enables user-specified point hints, it might be interesting to incorporate the stroke-based normal assignment for more compact user interaction.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their suggestion. This work was partially funded by the RGC of Hong Kong SAR (Project No. CityU1204014, CityU11200418), National Natural Science Foundation of China (Project No. 91748104, 61303147), Science Foundation of Hunan Province (Project No.2018ZJ0064), the Hong Kong Scholars Program, Ministry of Education of China HPCTSP Key Laboratory and supported by NVIDIA Corporation with the donation of the Titan Xp GPU.

REFERENCES

To illustrate the qualitative comparison of the generated results by different methods, we add some of the generated normal maps in Fig. 13. We add the complete comparison result in the supplemental materials.