Workshop on Spatial Audio Pedagogy using the Open Ambisonics Toolkit

Lindborg, PerMagnus; Pisano, Giuseppe

Published in:
Proceedings of the International Computer Music Conference 2024

Accepted/In press/Filed: 13/07/2024

Document Version:
Post-print, also known as Accepted Author Manuscript, Peer-reviewed or Author Final version

License:
CC BY

Publication record in CityU Scholars:
Go to record

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher’s copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Workshop on Spatial Audio Pedagogy using the Open Ambisonics Toolkit

PerMagnus Lindborg
City University of Hong Kong
pm.lindborg@cityu.edu.hk

Giuseppe Pisano
Norwegian Academy of Music
giuseppe.pisano@nmh.no

ABSTRACT
This is a Workshop with both practical, pedagogical, and theoretical elements. The increasing number of possible applications for spatial audio technologies has caused renewed interest on the subject from academic institutions and resulted in a more widespread diffusion of techniques and practices. However, the lack of an integrated methodology for teaching these technologies is clear. This served as a motivation for our team to develop the Open Ambisonics Toolkit (OAT), a hardware-software system for spatial sound pedagogy. We are actively promoting a democratisation of spatial audio through a DIY approach, and our aim is to serve tertiary educational institutions and individuals alike. We have previously presented OAT at a workshop held at the Conference for the International Community for Auditory Display (ICAD 2023) and in a graduate workshop at the 1st author’s institution. At the ICMC Conference, we will present the system components and its pedagogical development, which has not yet been fully covered. Through hands-on experiments and discussion on spatial audio pedagogy, the participants will familiarise themselves with OAT modules, learn about the design of a low-cost Ambisonics system, and try a spatial configuration in listening tests using their own sonic materials.

INTRODUCTION
The two authors are the Workshop leaders, and we have designed OAT together, starting the practical development in the autumn of 2022. We have previously presented workshops at the Conference for the International Community for Auditory Display (ICAD) [1] and at SoundLab (https://soundlab.scm.cityu.edu.hk). We would like to focus the ICMC workshop on the pedagogy aspect of OAT.

We suggest that the maximum number of participants should be around twelve. There are no special prerequisites, but a basic knowledge of Ambisonics will be helpful. Workshop duration should be around two hours. After having completed the Workshop, participants will have acquired knowledge about Ambisonics technologies (e.g. [2][3]) implemented in Pure Data (Pd) running on Raspberry Pi; insights into a pragmatic design of a low-cost 3D hardware-software system; and gained experience and critical skills through listening tests. See Figure 1. They will be able to download or copy OAT software, design manuals, and theory materials.

OAT, AN OVERVIEW
OAT has been developed at SoundLab, School of Creative Media (SMC), thanks to a Teaching Start-up Grant to the first author enabling the hire of the second author for the project (i.e. the Workshop leaders). The School offers a wide range of courses, including music and audio technologies, as well as new media applications in contemporary arts and digital communication [4]. Reflecting this diversity, the methods developed for OAT needed to be specific but also versatile. Having the opportunity to intercept student-led and faculty projects, as well as their expectations and issues related to immersive audio, the authors designed a toolkit that focuses on the most frequently encountered problems and provides all required information. OAT is extendable, which will through further development respond to future needs of different types of users. The democratisation of technologies leads potentially to a positive disruption of not only the economies of media production and consumption, but also of electroacoustic music aesthetics itself. Academic institutions have here an opportunity that they should not miss out on, or else "the democratisation of music technologies and the emergence of 'bedroom producers' could lead to universities or public-supported research centres being less central to the development of sonic arts." [5]. The authors have previously designed and
developed low-cost loudspeaker systems for sound installations [6][7].

The project we are here presenting builds on our previous experiences and takes the pedagogical context into consideration. OAT was designed not only for providing the necessary theoretical information, but also to share the design of hardware solutions, and document software that we believe answers pedagogical needs. With OAT, students in music technology as well as other learners will be able to explore Ambisonics and adapt the system for their specific needs. They might work in a range of contexts, such as presenting a sound installation at an art exhibition, experimenting with audio VR/AR, or monitoring their 3D audio work in a home studio [5].

With these considerations in mind, the Toolkit consists of interconnected modules that are also useful on their own. At this point in time, the main modules are:

1. **Hardware module**, in which we describe solutions to build inexpensive loudspeaker setups for Ambisonics in a DIY fashion. Currently, the system we have developed and tested is an eight-channel (8.1) speaker system that can be used in flexible configurations, such as octophonic (2D), cube (3D), and hemispheric (3D). The speakers are driven by amplifiers, DA converter, and CPU.

2. **Software module**, where we present software tools available for Ambisonics work with a specific focus on free/open source software compatible with Linux and Raspberry Pi, including Pd, ALSA, and AmpDec [8];

3. **Theory module**, where we explain Ambisonics in detail and provide documentation. It is accompanied by Pd patches in progressive detail.

For a full description of the system with more background on Ambisonics theory and examples of works, see [9].

TECHNICAL REQUIREMENTS

We will need access to a suitable space for at least five hours: two hours to set up (can be one day in advance), two hours for the Workshop, and one hour to strike out. The leaders will bring to the venue the following pieces of equipment, some of which will be assembled as part of the demonstration:

- 8x Customised mini loudspeakers;
- 8x Amplifiers and audio cables;
- 1x Raspberry Pi and shields;
- 1x Harddisk with software for OAT;
- 1x AudioInjector Octo DA converter;
- 1x Power supply.

Meanwhile, the following parts we are unable to bring, and would like to request that the organiser provide them:

- 1x Workshop room, free floorspace 4m x 4m;
- 8x Microphone stands;
- 1x Subwoofer (e.g. 8” approx. 45W) and cables;
- 1x Table (120 cm wide) for equipment;
- 1x Computer screen, keyboard, and mouse;
- 2x Power strips (≥ 4 outlets each);
- 1x Swivel stool for sweet-spot listening.

ACKNOWLEDGEMENTS

The development of OAT was funded by Teaching Start-up Grant #6000788 and ethical review of test procedures covered by Start-up Grant #7200671 from City University of Hong Kong, to PerMagnus Lindborg. The authors thank Dirk Stromberg, LaSalle College of the Arts, Singapore, for advice on configuring Jack and other software on Linux; SCM undergraduate student helper Cyrus Leung for assistance with acquiring materials; and SoundTeam members for participating in listening tests.

![Figure 1. OAT in an octophonic (8.1) configuration during listening tests.](image)

REFERENCES

