Semidefinite Programming for Approximate Maximum Likelihood Sinusoidal Parameter Estimation

Kenneth W. K. Lui (EURASIP Member) and H. C. So

Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Correspondence should be addressed to H. C. So, hcso@ee.cityu.edu.hk

Received 19 February 2009; Revised 8 September 2009; Accepted 20 November 2009

Recommended by T.-H. Li

We study the convex optimization approach for parameter estimation of several sinusoidal models, namely, single complex/real tone, multiple complex sinusoids, and single two-dimensional complex tone, in the presence of additive Gaussian noise. The major difficulty for optimally determining the parameters is that the corresponding maximum likelihood (ML) estimators involve finding the global minimum or maximum of multimodal cost functions because the frequencies are nonlinear in the observed signals. By relaxing the nonconvex ML formulations using semidefinite programs, high-fidelity approximate solutions are obtained in a globally optimum fashion. Computer simulations are included to contrast the estimation performance of the proposed semidefinite relaxation methods with the iterative quadratic maximum likelihood technique as well as Cramér-Rao lower bound.

Copyright © 2009 K. W. K. Lui and H. C. So. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The problem of sinusoidal parameter estimation in additive noise has been an important research topic because of its numerous applications in science and engineering [1–5]. The typical parameters of interest are frequencies, amplitudes, and phases. As the frequencies are nonlinear functions in the received noisy measurements, they are usually estimated prior to the amplitude and phase estimation. In this paper, we focus on optimal parameter estimation for the representative signal models of single complex/real tone, multiple complex sinusoids, and single two-dimensional (2D) complex tone, although the development can also be extended to other related models [6–13] in the literature.

Utilizing the linear prediction polynomial (LPP) of the noise-free signal, an ML estimator for sinusoidal parameter estimation has been proposed in [7, 8] under the standard assumption of Gaussian noise. The nonlinear least squares (NLSs) estimator [14] will also produce ML estimation performance when the noise is white. In particular, the ML frequency estimate of a single complex sinusoid in white Gaussian noise can be obtained from the periodogram peak [2, 15]. However, the cost functions of all these ML methods are multimodal and two steps are typically involved in the estimation procedure. First suboptimal initial parameter estimates are obtained by discrete Fourier transform (DFT), linear prediction [16], or other means [7, 8]. A refinement is then made through an iterative optimization of the cost functions. As a result, this means that sufficiently accurate initial estimates are necessary for global convergence. In this work, we approximate the nonconvex ML formulations as convex optimization problems so that a high-quality global solution is guaranteed. In fact, convex optimization [17–19] has been applied in a number of signal processing and communication applications [20–28]. Phase-shift keying demodulation, which is a Boolean quadratic problem with polynomial constraints, is studied in [20]. Multiple-input-multiple-output detection, which is a closet lattice point search problem, is examined in [21–23]. In addition, the problems of multigroup multicast transmit beamforming, digital filter design and localization are considered in [24–28] respectively. These problems are nonconvex in nature but can be approximated as constrained convex optimization programs where the objective functions are convex while the inequality constraints are convex and the equality constraints are linear.

The rest of the paper is organized as follows. We start with the simplest single complex tone model corrupted by...
white Gaussian noise in Section 2. Through semidefinite relaxation (SDR), the periodogram, LPP and NLS estimators are approximated as convex programs. In the first two SDR schemes, the frequency parameter is obtained prior to amplitude and phase estimation while the third one is a waveform estimator. In Section 3, the SDR approximations of the LPP and NLS estimators for a noisy real sinusoid are derived. Section 4 extends the SDR-LPP methodology in Sections 2 and 3 to the multiple tone model. An illustration for the dual tone case is provided. The SDR formulations of the periodogram and NLS estimators for a 2D complex tone are derived in Section 5, while the LPP version is omitted as its development is too tedious. Fast implementation of some developed SDR solutions for large observation records is suggested in Section 6. In Section 7, numerical examples are included to contrast the estimation performance of the proposed SDR methods with the iterative quadratic maximum likelihood (IQML) technique [7, 8] as well as Cramér-Rao lower bound (CRLB). It is worthy to point out that although the algorithms can work for noises which are non-Gaussian and/or colored, we keep the assumption of white Gaussian noise so that their optimality can be easily assessed by comparing with the benchmark of CRLB. Finally, conclusion is drawn in Section 8. A list of symbols that are used in the paper is given in Table 1.

2. Single Complex Tone

In this section, we tackle the simplest form of the sinusoidal estimation problem, namely, finding the parameters of a complex tone in additive noise. The discrete-time signal model is

\[y(n) = s(n) + \eta(n), \quad n = 1, 2, \ldots, N, \]

where

\[s(n) = A \exp\left\{ j(\omega n + \phi) \right\}. \]

The \(A > 0 \), \(\omega \in (-\pi, \pi) \) and \(\phi \in [0, 2\pi) \) are deterministic unknown constants which denote the sinusoidal amplitude, frequency, and phase, respectively, while the additive noise \(\eta(n) \) is a zero-mean complex Gaussian process. It is assumed that the covariance matrix of the noise vector \(\eta = [\eta(1), \eta(2), \ldots, \eta(N)]^{T} \), denoted by \(\Sigma_{\eta} = E(\eta\eta^{H}) \), is known up to a scalar. Our objective is to estimate \(A, \omega, \) and \(\phi \) from the \(N \) noisy measurements of \(y(n) \). Three SDR methods namely, periodogram, PPL, and NLS, are proposed to perform the estimation as follows.

2.1. Periodogram Approach. In this subsection, we assume that \([\eta(n)] \) are independent and identically distributed (IID), that is, \(\Sigma_{\eta} = \sigma_{\eta}^{2}I_{N} \), where \(\sigma_{\eta}^{2} \) is unknown. In this case, the ML frequency estimate can be obtained from the periodogram maximum [15]:

\[
\max_{\omega} |Y(\omega)|^{2},
\]

where \(Y(\omega) = \sum_{n=1}^{N} y(n) \exp\{-j\omega n\} \) is the discrete-time Fourier transform (DTFT) of \(y(n) \). The difficulty of solving (3) lies in its multimodality. A conventional strategy is to first obtain an initial estimate from the DFT peak and then apply a gradient search for (3). Here, (3) will be relaxed as a convex optimization problem so that a global high-quality solution is guaranteed. First, it is clear that (3) is equivalent to the following constrained problem:

\[
\max_{c, \omega} \left| c^{H}y \right|^{2} \quad \text{s.t.} \quad c(n) = \exp\{j\omega n\}, \quad n = 1, 2, \ldots, N,
\]

where \(y = [y(1), y(2), \ldots, y(N)]^{T} \) and \(c = [c(1), c(2), \ldots, c(N)]^{T} \). The constraints make (4) a nonconvex program as \(\exp\{\cdot\} \) is a periodic function. Furthermore, if the constraints are removed, maximization of the convex objective function \(|c^{H}y|^{2} = y^{H}c^{H}y \) will result in \(c(n) \to \infty \) as the function is not bounded above. To avoid this, we define \(C = cc^{H} \in \mathbb{C}^{N} \) to make the objective function affine and now \(|c^{H}y|^{2} \) is rewritten as \(y^{H}Cy \) which is linear in \(C \). Using the sinusoidal property of \(c(n) \), it is easy to show that \(C \) has a special structure of the form:

\[
C = \begin{bmatrix}
1 & c(1)^{*} & \cdots & c(N-1)^{*} \\
c(1) & 1 & \cdots & c(N-2)^{*} \\
\vdots & \vdots & \ddots & \vdots \\
c(N-1) & c(N-2) & \cdots & 1
\end{bmatrix}
\]

\[
= \text{Toeplitz}\left([1, c(1)^{*}, c(2)^{*}, \ldots, c(N-1)^{*}]\right).
\]

Then (4) is equivalent to

\[
\max_{C, \omega} y^{H}Cy \quad \text{s.t.} \quad C = cc^{H} = \text{Toeplitz}\left([1, c(1)^{*}, c(2)^{*}, \ldots, c(N-1)^{*}]\right).
\]

Finally, relaxing \(C = cc^{H} \) to \(C \succeq cc^{H} \) yields the SDR formulation for single complex tone frequency estimation:

\[
\max_{C, \omega} y^{H}Cy \quad \text{s.t.} \quad \begin{bmatrix}
C \\
c^{H}
\end{bmatrix} \succeq 0_{N+1},
\]

\[
C = \text{Toeplitz}\left([1, c(1)^{*}, c(2)^{*}, \ldots, c(N-1)^{*}]\right).
\]

Note that no constraints are imposed on \(c(n) \), \(n = 1, 2, \ldots, N-1 \). In the optimization literature, there are readily available solvers for finding the globally optimum solution for (7), such as SeDuMi [29] and SDPT3 [30, 31], and they basically employ the interior-point methods [32, 33]. As the estimate of \(C \), namely, \(\hat{C} \), is constrained as a unity-amplitude tone with zero initial phase, the frequency estimate, denoted by \(\hat{\omega} \), is computed as

\[
\hat{\omega} = \angle \hat{c}(1).
\]
With the use of (1), (2), and \(\hat{c} \), the amplitude and phase estimates, denoted by \(\hat{A} \) and \(\hat{\phi} \), are calculated using least squares (LS) as

\[
\hat{A} = \frac{|\hat{C}_H y|}{N}, \quad (9)
\]

\[
\hat{\phi} = -\angle(\hat{C}_H y). \quad (10)
\]

2.2. Linear Prediction Polynomial Approach.

Following the development in [34] with the use of the property of \(s(n) = \exp(j\omega_0)s(n-1) \), it is shown that the ML frequency estimator in the presence of Gaussian noise can be determined from minimization of the following multimodal function:

\[
\min_{c(i)} \sum_{i=1}^{N-1} (y_2 - c(1)y_1)^H \Sigma_e^{-1}(y_2 - c(1)y_1), \quad (11)
\]

where \(y_i = [y(i), y(2+i), \ldots, y(N-2+i)]^T \), \(i = 1, 2, \) and \(\Sigma_e = E\{ee^H\} \in \mathbb{C}^{N-1} \) is a weighting matrix with \(e = [e(1), e(2), \ldots, e(N-1)]^T \) whose element is \(e(n) = \eta(n + 1) - c(1)e(n) \), \(n = 1, 2, \ldots, N - 1 \), and the presence of \(c(1) \) in \(\Sigma_e^{-1} \) makes (11) violating the convex framework. We refer the estimator of (11) to as LPP approach. Unlike the periodogram, the ML property of (11) holds for a general form of \(\Sigma_e \), Moreover, (11) can be extended to the scenarios of multiple real or complex sinusoids. It is noteworthy that the iterative quadratic maximum likelihood (IQML) [7] technique provides a standard solution to (11) by relaxing the LPP cost function to a quadratic form, although a sufficiently close initial guess, which is usually obtained through solving (11) with \(\Sigma_e = I_{N-1} \), is required to attain the global minimum. Furthermore, the LPP scheme has similarities to the linear filtering approach in [35, 36].

For simplicity but without loss of generality, here we assume that \(\Sigma_e = \sigma^2 I \) and \(\Sigma_e \) is then of the form:

\[
\Sigma_e = \text{Toeplitz} \left(\begin{array}{c} 2, -c(1)^*, 0, 0, \ldots, 0 \end{array} \right) \sigma^2. \quad (12)
\]
Ignoring the scaling factor of \(\sigma_n^2 \) in (12), the minimizer of (11) is equivalent to

\[
\begin{align*}
\min_{\nu, c(1)} & \quad \nu \\
\text{s.t.} & \quad \nu = (y_2 - c(1)y_1)^{H}\Sigma_c^{-1}(y_2 - c(1)y_1), \\
\Sigma_c = \text{Toeplitz}\left(2, -c(1)^*, 0, 0, \ldots, 0\right).
\end{align*}
\]

By replacing (14) with Schur complement and relax the resultant expression, the SDR formulation for solving \(c(1) \) is

\[
\begin{align*}
\min_{\nu, c(1)} & \quad \nu \\
\text{s.t.} & \quad \begin{bmatrix} \nu & (y_2 - c(1)y_1)^{H} \end{bmatrix} \begin{bmatrix} (y_2 - c(1)y_1) & \Sigma_c \end{bmatrix} \geq 0_N, \\
\Sigma_c = \text{Toeplitz}\left(2, -c(1)^*, 0, 0, \ldots, 0\right).
\end{align*}
\]

It is noteworthy that the inverse operator is removed in the Schur complement and there is a linear relation between the weighting matrix elements and the parameter estimate. As a result, tight constraints are formed automatically. After getting \(\hat{c}(1) \), the estimates of frequency, amplitude and phase are computed using (8), (9), and (10), respectively.

2.3. Nonlinear Least Squares Approach

It is straightforward to see that the NLS estimator for the sinusoidal parameters can be expressed as the following constrained optimization problem:

\[
\begin{align*}
\min_{s, A, \omega, \phi} & \quad (y - s)^{H}\Sigma^{-1}(y - s) \\
\text{s.t.} & \quad s(n) = A \exp\{j(\omega n + \phi)\}, \quad n = 1, 2, \ldots, N,
\end{align*}
\]

where \(y = [y(1), y(2), \ldots, y(N)]^{T} \) and \(s = [s(1), s(2), \ldots, s(N)]^{T} \). Similar to (4), the constraints, \(s(n) = A \exp\{j\omega + \phi\}, \quad n = 1, 2, \ldots, N \), make (17) violating the convex framework. Based on the linear prediction property, the constraint of \(s(n) \) can be alternatively expressed as

\[
\begin{align*}
s(n) - \exp\{j\omega m\}s(n - m) &= 0 \\
\Rightarrow s(n)s(n - m)^{*} &= A^2 \exp\{j\omega n\} = A^2 c(m), \quad m = 1, 2, \ldots, N - 1.
\end{align*}
\]

Defining \(S = ss^{H} \in \mathbb{C}^N \) with \(|S|_{ij} = s(i)s(j)^{*} = A^2 c(i - j) \) and using (18), the constraint in (17) is equivalent to

\[
S = ss^{H} = \begin{bmatrix} A^2 c(0) & A^2 c(1)^{*} & \cdots & A^2 c(N - 1)^{*} \\
A^2 c(1) & A^2 c(0) & \cdots & A^2 c(N - 2)^{*} \\
\vdots & \vdots & \ddots & \vdots \\
A^2 c(N - 1) & A^2 c(N - 2) & \cdots & A^2 c(0) \end{bmatrix} = \text{Toeplitz}\left([A^2 c(0), A^2 c(1)^{*}, \ldots, A^2 c(N - 1)^{*}]\right).
\]

On the other hand, expanding the objective function of (17) yields

\[
s^{H}\Sigma^{-1}s - y^{H}\Sigma^{-1}y - \text{tr}(\Sigma^{-1}S) = y^{H}\Sigma^{-1}y.
\]

We drop the term \(y^{H}\Sigma^{-1}y \) which takes no effect in the minimization and replace \(s^{H}\Sigma^{-1}s \) with \(\text{tr}(\Sigma^{-1}S) \). Relaxing \(S = ss^{H} \) as \(S \succeq ss^{H} \), the SDR formulation becomes

\[
\begin{align*}
\min_{S, s} & \quad \text{tr}(\Sigma^{-1}S) - y^{H}\Sigma^{-1}y - s^{H}\Sigma^{-1}s \geq 0, \\
\text{s.t.} & \quad S = \begin{bmatrix} s & \text{ss}^{H} \end{bmatrix} \geq 0_{N+1}, \\
S & = \text{Toeplitz}\left([A^2 c(0), A^2 c(1)^{*}, \ldots, A^2 c(N - 1)^{*}]\right).
\end{align*}
\]

Note that no constraints are imposed on \(A^2 c(n), \quad n = 0, 1, \ldots, N - 1 \), and the SDR solution, namely, \(\hat{S} \), will be the estimated waveform which is a pure complex tone. The parameter estimates are easily computed as

\[
\hat{\omega} = \angle \left[\hat{S} \right]_{2,1}, \\
\hat{A} = \sqrt{\left[\hat{S} \right]_{1,1}}, \\
\hat{\phi} = \angle \left(\hat{c}(1) \left[\hat{S} \right]_{1,2} \right).
\]

3. Single Real Tone

In this section, we switch to find the parameters of a noisy real tone which is another fundamental sinusoidal estimation problem. The signal model is

\[
x(n) = s(n) + q(n), \quad n = 1, 2, \ldots, N,
\]

where

\[
s(n) = A \cos(\omega n + \phi).
\]

The real and complex models are very similar except now \(\omega \in (0, \pi) \) and the Gaussian noise \(q(n) \) is real. Similarly, the covariance matrix of the noise vector \(q = [q(1), q(2), \ldots, q(N)]^{T} \), denoted by \(\Sigma_q = E\{qq^{T}\} \), is assumed known up to a scalar. As the periodogram is not an optimum estimator for a real tone, only the LPP and NLS approaches will be presented as follows.
3.1. Linear Prediction Polynomial Approach. Let \(\rho_1 = \cos(\omega) \). Utilizing \(s(n) - 2\rho_1s(n - 1) + s(n - 2) \) and [34], the LPP estimator for \(\rho_1 \) is

\[
\min_{\rho_1} \left(x_3 - 2\rho_1 x_1 + x_2 \right)^T \Sigma_e^{-1} \left(x_3 - 2\rho_1 x_1 + x_2 \right),
\]

where \(x_i = [x(i), x(i + 1), \ldots, x(N + 3 - i)]^T, \) \(i = 1, 2, 3, \) and \(\Sigma_e = \mathbb{E}[e(e^T)] \in \mathbb{R}^{N - 3} \) with \(e = [e(1), e(2), \ldots, e(N - 2)]^T \) whose element is \(e(n) = q(n + 2) - 2\rho_1 q(n + 1) + q(n), n = 1, 2, \ldots, N - 2. \)

Assuming that \(\Sigma_q = \sigma_q^2 I_N, \) a scaled version of \(\Sigma_e \) is employed:

\[
\Sigma_e = \text{Toeplitz} \left(\left[2 + 4\rho_1^2, -4\rho_1, 1, 0, \ldots, 0 \right]^T \right).
\]

The minimizer of (27) is identical to

\[
\min_{\nu, \rho_1} \nu \quad \text{(29)}
\]

\[
\text{s.t.} \quad \nu = \left(x_3 - 2\rho_1 x_1 + x_2 \right)^T \Sigma_e^{-1} \left(x_3 - 2\rho_1 x_1 + x_2 \right),
\]

\[
\Sigma_e = \text{Toeplitz} \left(\left[2 + 4\rho_1^2, -4\rho_1, 1, 0, \ldots, 0 \right]^T \right).
\]

Now we make two relaxations. First, we relax the constraint of (30) as in (14). Second, as \(\Sigma_e \) is nonlinear in \(\rho_1 \) in (31), we substitute \(\rho_1^2 \) with a dummy variable \(\beta \) and include a new relaxed constraint of \(\beta \geq \rho_1^2. \) To strengthen the constraint, we assume that the sign of \(\rho_1, \) denoted by \(\Psi, \) is known, which can be easily determined. As \(|\rho_1| \leq 1, \) we have \(\Psi \rho_1 \geq \rho_1^2. \) As a result, a tighter constraint is \(\Psi \rho_1 \geq \beta \geq \rho_1^2. \) As a result, the SDR formulation for approximating (27) is

\[
\min_{\nu, \rho_1, \beta} \nu \quad \text{(32)}
\]

\[
\text{s.t.} \quad \nu = \left(x_3 + x_2 - 2\rho_1 x_1 \right)^T \frac{1}{\Sigma_e} \left(x_3 + x_2 - 2\rho_1 x_1 \right),
\]

\[
\Sigma_e = \text{Toeplitz} \left(\left[2 + 4\beta, -4\rho_1, 1, 0, \ldots, 0 \right]^T \right),
\]

\[
\Psi \rho_1 \geq \beta \geq \rho_1^2,
\]

where the matrix inverse operator that appears in (30) is removed by Schur complement representation. In our study, \(\Psi \) is obtained using

\[
\Psi = \text{sign} \left(\sum_{n=3}^{N} x(n - 1)[x(n) + x(n - 2)] \right).
\]

After obtaining \(\hat{\rho}_1 \), the estimated frequency, \(\hat{\omega} \), is computed as

\[
\hat{\omega} = \cos^{-1}(\hat{\rho}_1).
\]

With the use of \(\hat{\omega} \), the amplitude and phase are estimated according to constrained least squares:

\[
\min_{\xi} (x - B\xi)^T (x - B\xi) \quad \text{(35)}
\]

\[
\text{s.t.} \quad \xi^T \xi = A^2,
\]

where

\[
B = \begin{bmatrix}
\cos(\hat{\omega}) & \sin(\hat{\omega}) \\
\cos(2\hat{\omega}) & \sin(2\hat{\omega}) \\
\vdots & \vdots \\
\cos(N\hat{\omega}) & \sin(N\hat{\omega})
\end{bmatrix},
\]

\[
\xi = \begin{bmatrix}
A \cos(\phi) \\
A \sin(\phi)
\end{bmatrix},
\]

and \(x = [x(1), x(2), \ldots, x(N)]^T. \) By expanding the objective function of (35) and removing \(x^T B^T B x, \) and introducing a dummy matrix \(\Xi = \xi \xi^T, \) (35) is equivalent to

\[
\min_{\Xi} \text{tr} (B^T B \Xi) - 2x^T B \xi \quad \text{(36)}
\]

\[
\text{s.t.} \quad \text{tr}(\Xi) = A^2,
\]

\[
\Xi = \xi \xi^T.
\]

Applying relaxation on \(\Xi = \xi \xi^T, \) the SDR estimator for \(A \) and \(\phi \) is

\[
\min_{\Xi} \text{tr} (B^T B \Xi) - 2x^T B \xi \quad \text{(37)}
\]

\[
\text{s.t.} \quad \text{tr}(\Xi) = A^2,
\]

where \(A^2 \) is a constant. Here, we have a convex program with unique optimum without dealing with multimodality as in the Lagrangian multiplier approach. Finally, the amplitude and phase estimates are computed as

\[
\hat{A} = \sqrt{\text{tr} (\Xi)},
\]

\[
\hat{\phi} = \tan^{-1} \left(\frac{[\xi]_1}{[\xi]_2} \right).
\]
3.2. Nonlinear Least Squares Approach. Similar to Section 2.3, the NLS estimator for the real sinusoidal is

\[
\min_{s, \omega, \phi, A} (x - s)^T \Sigma_q^{-1} (x - s)
\]

\[
\text{s.t. } s(n) = A \cos(\omega n + \phi), \quad n = 1, 2, \ldots, N,
\]

where \(x = [x(1), x(2), \ldots, x(N)]^T \) and \(s = [s(1), s(2), \ldots, s(N)]^T \). Now we transform the constraint of \(s(n) = A \cos(\omega n + \phi) \) using the general LPP property as follows:

\[
s(n) + s(n - 2m) = 2 \rho_m s(n - m), \quad n = 1, 2, \ldots, N, \quad m = 1, 2, \ldots, M,
\]

where \(\rho_m = \cos(m\omega) \) and \(M = \lceil (N - 1)/2 \rceil \) is the maximum index for \(m \). By considering various \(n \) in (42), the set of equalities is converted to

\[
\frac{s(i) + s(i - 2m)}{s(i - m)} = \frac{s(j) + s(j - 2m)}{s(j - m)}, \quad m = 1, 2, \ldots, M, \quad i > j = 2m + 1, 2m + 2, \ldots, N
\]

\[
\Rightarrow s(i) s(j - m) + s(i - 2m) s(j - m) = s(i - m) s(j) + s(i - m) s(j - 2m),
\]

where \(\{\rho_m\} \) and \(\omega \) are eliminated. Next, we define \(S = ss^T \in \mathbb{R}^N \) with \(S_{i,j} = s(i) s(j) \) to write (43) as

\[
[S]_{i,j-m} + [S]_{i-2m,j-m} = [S]_{i-m,j} + [S]_{i-m,j-2m}, \quad m = 1, 2, \ldots, M, \quad i > j = 2m + 1, 2m + 2, \ldots, N.
\]

Using similar procedure as in (20) and (21), the objective function of (41) is modified as tr(\(\Sigma_q^{-1} S \)) - 2s^T \Sigma_q^{-1} x. The SDR formulation is then given as

\[
\min_{S\geq 0} \text{tr}(\Sigma_q^{-1} S) - 2s^T \Sigma_q^{-1} x
\]

\[
\text{s.t. } [S]_{i,j-m} + [S]_{i-2m,j-m} = [S]_{i-m,j} + [S]_{i-m,j-2m}, \quad m = 1, 2, \ldots, M, \quad i > j = 2m + 1, 2m + 2, \ldots, N.
\]

As \(\hat{s} \) is the waveform estimate which is restricted to be a real tone, the parameter estimates are sequentially computed as

\[
\hat{\omega} = \cos^{-1}\left(\frac{\hat{s}(1) + \hat{s}(3)}{\hat{s}(2)}\right),
\]

\[
\hat{\phi} = \tan^{-1}\left(\frac{\hat{s}(1) \cos(2\hat{\omega}) - \hat{s}(2) \cos(\hat{\omega})}{\hat{s}(1) \sin(2\hat{\omega}) - \hat{s}(2) \sin(\hat{\omega})}\right),
\]

\[
\hat{A} = \frac{\hat{s}(1)}{\cos(\hat{\omega} + \hat{\phi})}.
\]

4. Multiple Complex Tones

In this section, we generalize our development in Sections 2 and 3 to multiple complex sinusoids. Now the signal model is

\[
y(n) = s(n) + \eta(n), \quad n = 1, 2, \ldots, N,
\]

where

\[
s(n) = \sum_{m=1}^{L} A_m \exp\{j(\omega_m n + \phi_m)\},
\]

where \(A_m > 0, \omega_m \in (-\pi, \pi) \) and \(\phi_m \in [0, 2\pi) \) represent the amplitude, frequency, and phase of \(m \)th complex tone, respectively, and they are unknown constants with \(\omega_i \neq \omega_j, i \neq j \), while \(\eta \) is a zero-mean complex Gaussian noise. The number of sinusoids \(L \) is assumed known. In the following, the SDR algorithm based on the LPP approach will be presented. Note that it is difficult to apply the NLS approach as there will be numerous cross-terms. Based on the linear prediction property for multiple complex tone signal, we have

\[
s(n) + \sum_{m=1}^{L} a_m s(n - m) = 0,
\]

where

\[
a_1 = -\sum_{i=1}^{L} \rho_{i_1},
\]

\[
a_2 = \sum_{i=1, j=1}^{L} \rho_{i_1} \rho_{i_2},
\]

\[
\ldots \ldots \ldots
\]

\[
a_m = (-1)^{m-1} \sum_{i=1}^{L} \sum_{i_1=1}^{m-1} \ldots \sum_{i_{m-1}=1}^{m-1} \prod_{j=1}^{m} \rho_{i_j},
\]

\[
\ldots \ldots \ldots
\]

\[
a_L = (-1)^L \prod_{j=1}^{L} \rho_{i_j},
\]
and $\rho_m = \exp\{j\omega_m\}$. Note that $\{\rho_m\}$ are the roots of the polynomial with $\{a_m\}$ as coefficients. On the other hand, the LPP estimator for $\{a_m\}$ is

$$
\text{min}_{\{a_m\}} \left[y_{L+1} + \sum_{m=1}^{L} a_m y_m \right]^H \Sigma_e^{-1} \left[y_{L+1} + \sum_{m=1}^{L} a_m y_m \right],
$$

(53)

where $y_i = [y(i), y(i+1), \ldots, y(N+L+1-i)]^T$, $i = 1, 2, \ldots, L+1$ are the vectors of the observed signal, and $\Sigma_e = E\{ee^H\} \in \mathbb{C}^{N-L}$ with $e = [e(1), e(2), \ldots, e(N-L)]^T$ and its elements are defined as

$$
e(n-L) = y(n) + \sum_{m=1}^{L} a_m y(n-m), \quad n = L+1, L+2, \ldots, N.
$$

(54)

Assuming that $\Sigma_\eta = \sigma_\eta^2 I_N$, Σ_e becomes

$$
\Sigma_e = \text{Toeplitz}\left(\left(\sum_{m=0}^{L} a_m a_m^*, \sum_{m=1}^{L} a_m a_{m-1}^*, \ldots, \sum_{m=0}^{L} a_m a_{m-N}^*, a_m a_{m-N+1}^*, \ldots, 0 \right) \right).
$$

(55)

As in the estimator for a single complex tone, we rewrite the optimization problem of (53) by including (55) as

$$
\text{min}_{\{a_m\}} \left[y_{L+1} + \sum_{m=1}^{L} a_m y_m \right]^H \Sigma_e^{-1} \left[y_{L+1} + \sum_{m=1}^{L} a_m y_m \right]
$$

s.t. $\Sigma_e = \text{Toeplitz}\left(\left(\sum_{m=0}^{L} a_m a_m^*, \sum_{m=1}^{L} a_m a_{m-1}^*, \ldots, \sum_{m=0}^{L} a_m a_{m-N}^*, a_m a_{m-N+1}^*, \ldots, 0 \right) \right),
$$

(56)

which consists of cross-terms involving $\{a_m\}$ and resulting in a nonconvex program. We now define two dummy matrices $A \in \mathbb{C}^{L+1}$ and $R \in \mathbb{C}^{L+1}$ to replace $\{a_m\}$ and $\{\rho_m\}$:

$$
A := \begin{bmatrix} a a^H & a \\ a^H & 1 \end{bmatrix},
$$

(57)

$$
R := \begin{bmatrix} \rho \rho^H & \rho \\ \rho^H & 1 \end{bmatrix},
$$

(58)

where $\rho = [\rho_1, \rho_2, \ldots, \rho_L]^T$ and $a = [a_1, a_2, \ldots, a_L]^T$. When A is introduced, the constraints will not be tight enough because the relation between entries of A and $\{a_m\}$ is relaxed. To compensate this, we look for relationships between the entries of A and R, which is analogous to (43). For the (L, L) entry of A, we have

$$
|A|_{L,L} = a_L a_L^* = (-1)^L \prod_{i=1}^{L} \rho_i = 1.
$$

(59)

For the lth row and Lth column, the relations are

$$
|A|_{m,L} = a_m a_L^* = (-1)^{L-m} \prod_{i=1}^{m-1} \rho_i = (-1)^{L-m} \prod_{i=1}^{m-1} \rho_i
$$

as $(-1)^{L-m} = (-1)^{L-m}$. Hence, A has the structure of

$$
|A|_{m,k} = a_m a_k^* = a_m a_k^* a_L
$$

(60)

Finally, $|A|_{1,1}$ and R are connected by

$$
|A|_{1,1} = a_1 a_1^* = \left| -\sum_{i=1}^{L} \rho_i \right|^2 = \sum_{m=1}^{L} \sum_{k=1}^{L} |R|_{m,k},
$$

(62)

and all the diagonal elements of R are

$$
|\text{diag}(R, 0)|_m = 1, \quad m = 1, 2, \ldots, L.
$$

(63)

Constraints, which limit the degrees of freedom of A and R are obtained from (59)–(63). To fit (56) into convex framework, we replace $a_i a_j^*$ with $|A|_{i,j}$. Furthermore, by introducing a dummy variable ν, we make the objective function of (53) to a constraint. As a result, the optimization problem is now

$$
\text{min}_{A_{(\{a_m\}), \nu}} \nu
$$

s.t. $\nu = \left[y_{L+1} + \sum_{m=1}^{L} a_m y_m \right]^H \Sigma_e^{-1} \left[y_{L+1} + \sum_{m=1}^{L} a_m y_m \right],
$$

$$
\Sigma_e = \text{Toeplitz}\left(\left(\sum_{m=0}^{L} |A|_{m,m}^* \sum_{m=1}^{L} |A|_{m,m-1}^*, \ldots, \sum_{m=0}^{L} |A|_{m,m-N+1}^*, |A|_{L,0}^* \ldots, 0 \right) \right),
$$

$$
a_1 = \rho_1 + \rho_2 + \cdots + \rho_L,
$$

(64)

where the last constraint comes from the definition of a_1 and we have defined $|A|_{0,0} = 1$, $|A|_{m,0} = a_m$, and $|A|_{0,m} = a_m^*$.

\(m = 1, 2, \ldots, L \). Using Schur complement representation and performing SDR relaxation, (64) becomes

\[
\begin{align*}
\min_{\text{R.A.}(a_m, \rho_m), \nu} & \quad \nu \\
\text{s.t.} & \quad \begin{bmatrix}
\nu \\
Y_{L+1} + \sum_{m=1}^{L} a_m y_m
\end{bmatrix}^H \preceq 0_{N-L+1}, \\
& \quad \begin{bmatrix}
A_{m, m, \ldots, 1, 2} \Sigma^T
\end{bmatrix} \preceq 0,
\end{align*}
\]

\(\Sigma_{\xi} = \text{Toeplitz}\left(\begin{bmatrix}
\sum_{m=0}^{L} [A]_{m, m}, \sum_{m=1}^{L} [A]_{m, m-1}, \ldots, \\
\sum_{m=1}^{L} [A]_{m, m-k}, \ldots, [A]_{L, 0}, 0, \ldots, 0
\end{bmatrix}^T \right),
\]

\[
R \succeq 0_{L+1},
\]

\[
A \succeq 0_{L+1},
\]

\[
a_1 = \rho_1 + \rho_2 + \cdots + \rho_L,
\]

\[
[A]_{m, k} = [A]_{L-m, k}, \quad m, k = 1, 2, \ldots, L,
\]

\[
[A]_{1, 1} = \sum_{m=1}^{L} \sum_{k=1}^{L} [R]_{m, k},
\]

\[
[A]_{1, L} = 1,
\]

\[
[\text{diag}(R, 0)]_m = 1, \quad m = 1, 2, \ldots, L,
\]

(65)

where the last four constraints are based on (59)–(63) to limit the matrix structure. It is worthy to mention that although constraints are imposed, some entries are not well bounded which may decrease the estimation accuracy. Note also that similar to (32), the inverse matrix operator is removed from the Schur complement representation. The frequencies are estimated by finding the phases of \(\{\hat{\rho}_m\} \). After obtaining \(\{\hat{\omega}_m\}, \{\hat{A}_m\} \) and \(\{\hat{\phi}_m\} \) are computed similarly as in (35):

\[
\begin{align*}
\min_{\xi, \{A_m\}} & \quad (x - B\xi)^H(x - B\xi) \\
\text{s.t.} & \quad [\text{diag}(\xi^H, 0)]_m = A_m^2, \quad m = 1, 2, \ldots, L,
\end{align*}
\]

(66)

where

\[
B = \begin{bmatrix}
\exp\{j\hat{\omega}_1\} & \exp\{j\hat{\omega}_2\} & \cdots & \exp\{j\hat{\omega}_L\} \\
\exp\{j2\hat{\omega}_1\} & \exp\{j2\hat{\omega}_2\} & \cdots & \exp\{j2\hat{\omega}_L\} \\
\vdots & \vdots & \ddots & \vdots \\
\exp\{jN\hat{\omega}_1\} & \exp\{jN\hat{\omega}_2\} & \cdots & \exp\{jN\hat{\omega}_L\}
\end{bmatrix},
\]

\[
\xi = [A_1 \exp\{j\phi_1\}, A_2 \exp\{j\phi_2\}, \ldots, A_L \exp\{j\phi_L\}]^T.
\]

(67)

By expanding (66) and dropping the irrelevant terms, (66) is equivalent to

\[
\begin{align*}
\min_{\xi, \{A_m\}} & \quad \xi^H B^H B\xi - 2\gamma^H B\xi \\
\text{s.t.} & \quad [\text{diag}(\xi^H, 0)]_m = A_m^2, \quad m = 1, 2, \ldots, L.
\end{align*}
\]

(68)

We then define a matrix \(\Xi = \xi^H \) and perform relaxation on (68) to yield

\[
\begin{align*}
\min_{\Xi, \{A_m\}} & \quad \text{tr}(B^H B\Xi) - 2\gamma^H B\xi \\
\text{s.t.} & \quad [\text{diag}(\Xi, 0)]_m = A_m^2, \quad m = 1, 2, \ldots, L,
\end{align*}
\]

(69)

where \(\{A_m^2\} \) are treated as constants. The amplitude and phase estimates are computed as

\[
\hat{A}_m = \sqrt{[\text{diag}(\Xi, 0)]_m}, \quad m = 1, 2, \ldots, L,
\]

\[
\hat{\phi}_m = \angle([\xi]_m), \quad m = 1, 2, \ldots, L.
\]

(70)

(71)

As an illustration, we consider \(L = 2 \) as follows. The linear prediction property of (51) gives

\[
s(n) + a_1 s(n-1) + a_2 s(n-2) = 0,
\]

(72)

where \(a_1 = \rho_1 + \rho_2 \) and \(a_2 = \rho_1 \rho_2 \). The covariance matrix is

\[
\Sigma_{\xi} = \text{Toeplitz}\left(\begin{bmatrix}
1 + a_1 a_2^* + a_2 a_1^*, a_1^* + a_2 a_1^* & a_1^* + a_2 a_1^* & \cdots & a_1^* + a_2 a_1^* \\
\vdots & \vdots & \ddots & \vdots \\
1 & a_1^* + a_2 a_1^* & \cdots & a_1^* + a_2 a_1^* \\
\end{bmatrix} \right) \in \mathbb{C}^{N-2}.
\]

(73)

From (59) and (62), and replacing \(a_i a_i^* \) with \([A]_{i,i} \), \(i = 1, 2 \), we have

\[
1 + a_1 a_1^* + a_2 a_2^* = 1 + [A]_{1,1} + [A]_{2,2} = 1 + \sum_{m=1}^{2} \sum_{k=1}^{2} [R]_{m, k} + 1.
\]

(74)

From (61), we get

\[
a_1 + a_2 a_2^* = a_1 + [A]_{1,1}
\]

\[
a_1 + a_2 a_2^* = a_1 + [A]_{2,2} = a_1 + a_1^*.
\]

(75)
Applying (74) and (75) yields
\[
\begin{align*}
\min_{\hat{a}_1, \hat{a}_2, \rho_1, \rho_2, \nu} & \quad \nu \\
\text{s.t.} & \quad \nu = (y_3 + a_1 y_1 + a_2 y_2)^H \Sigma_c^{-1} (y_3 + a_1 y_1 + a_2 y_2), \\
& \quad a_1 = \rho_1 + \rho_2, \\
& \quad \Sigma_c = \text{Toeplitz} \left(\begin{bmatrix} 2 + \sum_{m=1}^{N} \sum_{k=1}^{2} [R]_{m,k} a_1 + a_1^* a_2^*, 0, \ldots, 0 \end{bmatrix} \right), \\
& \quad a_1 = \rho_1 + \rho_2, \\
& \quad \left[\text{diag}(R, 0) \right]_m = 1, \quad m = 1, 2.
\end{align*}
\] (76)

Finally, the SDR algorithm for frequencies is
\[
\begin{align*}
\min_{\mathbf{R}, \hat{a}_1, \hat{a}_2, \phi_1, \phi_2, \rho_2, \nu} & \quad \nu \\
\text{s.t.} & \quad \nu = (x_3 + a_1 x_1 + a_2 x_2)^H \Sigma_c \\
& \quad \mathbf{A} \succeq \mathbf{0}_3, \\
& \quad \mathbf{R} \succeq \mathbf{0}_3, \\
& \quad \Sigma_c = \text{Toeplitz} \left(\begin{bmatrix} 2 + \sum_{m=1}^{N} \sum_{k=1}^{2} [R]_{m,k} a_1 + a_1^* a_2^*, 0, \ldots, 0 \end{bmatrix} \right), \\
& \quad a_1 = \rho_1 + \rho_2, \\
& \quad \left[\text{diag}(R, 0) \right]_m = 1, \quad m = 1, 2.
\end{align*}
\] (77)

Using (69)–(71), \(\hat{A}_1, \hat{\phi}_1, \hat{A}_2, \) and \(\hat{\phi}_2 \) can then be determined. For \(L = 2 \), \(\mathbf{B} \) and \(\xi \) have the forms of
\[
\mathbf{B} = \begin{bmatrix} \exp{\{j \hat{\omega}_1\}} & \exp{\{j \hat{\omega}_2\}} \\
\exp{\{2j \hat{\omega}_1\}} & \exp{\{2j \hat{\omega}_2\}} \\
\vdots & \vdots \\
\exp{\{Nj \hat{\omega}_1\}} & \exp{\{Nj \hat{\omega}_2\}} \end{bmatrix}, \\
\xi = [A_1 \exp{\{j \phi_1\}}, A_2 \exp{\{j \phi_2\}}]^T.
\] (78)

It is noteworthy that the real signal model can be tackled in a similar manner by including the two additional constraints: \(\{a_m\} \) are symmetric and \(\{\rho_m\} \) are in conjugate pairs.

5. Two-Dimensional Complex Tone

In this section, we will extend the periodogram and NLS approaches in Section 2 to parameter estimation of a 2D complex sinusoid in additive noise. It is straightforward to apply the LPP approach although its formulation is more tedious. The observed 2D signal is modeled as
\[
y(m, n) = A \exp{\{j (\mu m + \nu n + \phi)\}} + \eta(m, n) \quad m = 1, 2, \ldots, M, \quad n = 1, 2, \ldots, N,
\] (79)
where \(A \) is the unknown amplitude, \(\mu \) and \(\nu \) are the unknown 2D frequencies, and \(\phi \) is the initial phase while \(\eta(m, n) \) is a zero-mean Gaussian noise. The task is to find \(\mu, \nu, A, \phi \) from the \(MN \) samples of \(\{y(m, n)\} \). To facilitate the algorithm...
development, we let $S_{m,n} = A \exp\{j(\mu m + \nu n + \phi)\}$, $Y_{m,n} = y(m,n)$ and $N_{m,n} = \eta(m,n)$ to rewrite (79) as

$$Y = S + N.$$ \hfill (80)

5.1. Periodogram Approach. Assuming that $\{\eta(m,n)\}$ are IID or $E\{\text{vec}(N)^H \text{vec}(N)\} = \sigma^2 N_{MN}$ with unknown σ^2, the ML frequency estimates can be obtained from

$$\max_{\mu,\nu} \left| \mathcal{Y}(\mu, \nu) \right|^2,$$ \hfill (81)

where $\mathcal{Y}(\mu, \nu) = \sum_{m=1}^{M} \sum_{n=1}^{N} y(m,n) \exp\{-j(\mu m + \nu n)\}$ is the 2D DTFT of $y(m,n)$. By introducing a dummy matrix C which is analogous to c in the single complex tone model, the optimization problem of (81) is equivalent to

$$\max_{C_{\mu,\nu}} \left| \text{vec}(C)^H \text{vec}(Y) \right|^2 \quad \text{s.t. } C_{m,n} = \exp\{j(\mu m + \nu n)\}.$$ \hfill (82)
Applying SDR on (83) and retaining the Toeplitz structure of C yields the estimator for 2D frequencies:

$$\max_{C_{M,N}} \quad \text{vec}(Y)^H C \text{vec}(Y)$$

$$\text{s.t.} \quad C = \text{vec}(C) \text{vec}(C)^H,$$

$$C_{m,n} = \exp\{j (\mu m + \nu n)\}. \tag{83}$$

Due to the Toeplitz structure, $$c_n^{(k)}$$ has the form of $$\exp\{j kn\}$$. The C and perm1(C, M, N) are used to maintain the Toeplitz structure in vertical and horizontal directions, respectively, and the ideal expression of the latter is vec $$\{C^T\}^H \text{vec}(C^T)$$. For the entries of C depicting the form of $$\exp\{j (\mu + \nu n)\}, n = 1, 2, \ldots, \min(M, N),$$ where $$(\mu + \nu)$$ is considered as a frequency parameter, perm2(C, M, N) is employed to impose the corresponding Toeplitz relation. (See the appendix for the perm function development.) The frequency estimates are computed as

$$\hat{\mu} = \angle\left(\left[\text{vec}(Y)\right]_{2,1}\right), \quad \hat{\nu} = \angle\left(\left[\text{vec}(C)\right]_{2,1}\right). \tag{85}$$

With the use of the estimated C, the LS amplitude and phase estimates, denoted by $$\hat{A}$$ and $$\phi$$, are

$$\hat{A} = \frac{|\text{tr}(YC^H)|}{MN}, \tag{86}$$

$$\hat{\phi} = \angle\left(\text{tr}(YC^H)\right). \tag{87}$$

5.2. Nonlinear Least Squares Approach. Denoting the noise covariance matrix as $$\Sigma_N = \text{E}\{\text{vec}(N) \text{vec}(N)^H\},$$ the NLS estimator for 2D sinusoidal parameters is

$$\min_{S_{M,N}, \mu, \nu, \phi} \quad \{ \text{vec}(Y) - \text{vec}(S)\}^H \Sigma_N^{-1} \{ \text{vec}(Y) - \text{vec}(S)\}$$

$$\text{s.t.} \quad \left[S\right]_{m,n} = A \exp\{j (\mu m + \nu n + \phi)\}, \tag{88}$$

$$m, n = 1, 2, \ldots, M.$$
Introducing a dummy matrix $S = \text{vec}(S) \text{vec}(S)^H$, (88) is equivalent to

$$
\min_{S} \quad \text{tr}\left(\Sigma^{-1}S\right) - \text{vec}(S)^H \Sigma_N^{-1} \text{vec}(Y) - \text{vec}(Y)^H \Sigma^{-1} \text{vec}(S)
$$

s.t. \quad S = \text{vec}(S) \text{vec}(S)^H,

$$
[S]_{m,n} = A \exp\left\{ j(\mu m + \nu n + \phi) \right\}, \quad m,n = 1,2,\ldots, M.
$$

(89)

Performing relaxation and maintaining Toeplitz structure on S yields the SDR formulation:

$$
\min_{S} \quad \text{tr}\left(\Sigma^{-1}S\right) - \text{vec}(S)^H \Sigma_N^{-1} \text{vec}(Y) - \text{vec}(Y)^H \Sigma^{-1} \text{vec}(S)
$$

s.t. \quad \left[\begin{array}{cc} S & \text{vec}(S) \\ \text{vec}(S)^H & 1 \end{array} \right] \succeq 0_{NM+1 \times MN+1},

$$
S = \text{blkdiag}\left\{ S^{(\mu)}, S^{(\nu)}, \ldots, S^{(\mu)} \right\},
$$

perm1(S,M,N) = \text{blkdiag}\left\{ S^{(\nu)}, S^{(\nu)}, \ldots, S^{(\nu)} \right\},

perm2(S,M,N) = S^{(\mu+\nu)},

$$
S^{(\kappa)} = \text{Toeplitz}\left[\begin{array}{c} c_0^{(\kappa)} \ c_1^{(\kappa)} \ast \ c_2^{(\kappa)} \ast \ \cdots \ \ c_{N-1}^{(\kappa)} \end{array} \right], \quad \kappa = \mu, \nu, \mu + \nu,
$$

(90)

where $c_n^{(\kappa)}$ will be of the form of $A^2 \exp\{ j\kappa n \}$. The perm1(S,M,N) and perm2(S,M,N) perform similar functions as in the periodogram approach but with a scaling of A^2. From the estimate of $c_1^{(\kappa)}$, denoted by $\hat{c}_1^{(\kappa)}$, $\kappa = \mu, \nu$, the 2D frequency estimates are calculated as

$$
\hat{\mu} = \angle(\hat{c}_1^{(\mu)}), \quad \hat{\nu} = \angle(\hat{c}_1^{(\nu)}),
$$

(91)

while the amplitude and phase estimates are computed as

$$
\hat{A} = \sqrt{|S|_{1,1}}, \quad \hat{\phi} = \angle(S_{1,1})^{(\mu+\nu)*}.
$$

(92, 93)
In particular, when the noises are uncorrelated among rows or columns, we can break down the huge SDR constraint of S and (90) is simplified as

$$\text{min}_{S, \lambda} \quad \text{tr}(\Sigma_N^{-1}S) - \text{vec}(S)^H \Sigma_N^{-1} \text{vec}(Y) - \text{vec}(Y)^H \Sigma_N^{-1} \text{vec}(S)$$

s.t. \[
\begin{bmatrix}
S^{(\mu)} & s^{(\mu)}_n \\
(\mu) & 1
\end{bmatrix} \succeq 0_{M+1}, \quad n = 1, 2, \ldots, N, \\
\begin{bmatrix}
S^{(\nu)} & s^{(\nu)}_m \\
(\nu) & 1
\end{bmatrix} \succeq 0_{N+1}, \quad m = 1, 2, \ldots, M,
\begin{bmatrix}
S^{(\mu+\nu)} & \text{diag}(S, 0) \\
\text{diag}(S, 0)^H & 1
\end{bmatrix} \succeq 0_{\min(M, N)+1}, \\
S = \text{blkdiag}\left(\frac{N}{M}, S^{(\mu)}, \ldots, S^{(\mu)}\right), \\
\text{perm}_1(S, M, N) = \text{blkdiag}\left(S^{(\nu)}, \ldots, S^{(\nu)}\right), \\
\text{perm}_2(S, M, N) = S^{(\mu+\nu)}, \\
S^{(x)} = \text{Toeplitz}\left(\begin{bmatrix}c_0^{(x)}, c_1^{(x)}, \ldots, c_N^{(x)}\end{bmatrix}\right), \quad \kappa = \mu, \nu, \mu + \nu, \quad \text{tr}(\Sigma_N^{-1}S)$$

by excluding entries of S which are uncorrelated, and $s^{(\nu)}_m$ and $S^{(\nu)}_n$ are the mth column and nth row of S, respectively.

If the noises are IID processes where Σ_N^{-1} is proportional to the identity matrix, $\text{tr}(\Sigma_N^{-1}S)$ of (94) will be replaced by $NM|S|_{1,1}$.

6. Fast Algorithm

In the previous sections, we come across some constraints with the following structure:

$$\begin{bmatrix} T & t \\ t^H & 1 \end{bmatrix} \succeq 0_{N+1}$$

s.t. \[
T = \text{Toeplitz}([\tau_0, \tau_1, \ldots, \tau_{N-1}]),
\begin{bmatrix}
\tau_0 & \tau_{i-j} & t(i) \\
\tau_{i-j} & \tau_0 & t(j) \\
t(i)^* & t(j)^* & 1
\end{bmatrix} \succeq 0_3, \quad i > j = 1, 2, \ldots, N,
\begin{bmatrix}
1 & c(i-j) & c(i) \\
c(i-j)^* & 1 & c(j) \\
c(i)^* & c(j)^* & 1
\end{bmatrix} \succeq 0_3, \quad i > j = 1, 2, \ldots, N.
\]

where (96) corresponds to $N(N - 1)/2$ semidefinite constraints with size 3×3 which is analogous to the ESPD [37]. As an illustration, (7) can be written as

$$\max_{c(i)} \quad \sum_{i \neq j}^N y(i-j)c(i-j) + \left(\sum_{i \neq j}^N y(i-j)c(i-j)\right)^*$$

s.t. \[
\begin{bmatrix}
1 & c(i-j) & c(i) \\
c(i-j)^* & 1 & c(j) \\
c(i)^* & c(j)^* & 1
\end{bmatrix} \succeq 0_3, \quad i > j = 1, 2, \ldots, N.
\]

where $\tau_0 = 1$, $\tau_n = c(n)$, $n = 1, 2, \ldots, N - 1$, and $t(n) = c(n)$, $n = 1, 2, \ldots, N$. Furthermore, the entries of C are replaced with the affine objective function.
7. Simulation Results

Computer simulations are conducted to evaluate the sinusoidal parameter estimation performance of the proposed SDR approach by comparing with the IQML estimator and CRLB in terms of mean square error (MSE). We utilize the MATLAB toolbox YALMIP [38] to realize all SDP algorithms where the solvers of SeDuMi [29] and SDPT3 [30, 31] are employed. In the IQML scheme, Σ_e is initialized by the identity matrix with $I = 3$ iterations, and amplitude and phase estimation is performed by LS after obtaining the frequencies. The additive noises are zero-mean white complex/real Gaussian processes and they are scaled to obtain different signal-to-noise ratio (SNR) conditions. All results are based on 500 independent runs.

In the first test, we examine the single complex tone signal model and the sinusoidal parameters are assigned as $A = \sqrt{2}$, $\omega = 0.6\pi$, and $\phi = 0.8\pi$. The data length is $N = 20$. Figures 1 to 3 show the MSEs for A, ω, and ϕ, respectively, using the proposed SDR methods and IQML estimator as well as CRLB. It is seen that the SDR approximations for the periodogram and NLS estimators perform almost identical and give the best performance in terms of estimation accuracy and threshold SNR. This is due to the tightness of their SDR constraints. In relaxing the NLS estimator, the
differences between the lower and upper bounds are small, though equalities are replaced by positive semidefinite (PSD) constraints. While in the periodogram-based scheme, the linear constraint helps to sustain the structure even with the PSD constraints. On the other hand, the LPP and IQML methods also give optimum estimation performance but with larger threshold SNR values. They perform similarly because both relax the same cost function, although the relaxation techniques are different. Larger threshold SNRs also indicate that the relaxation in the LPP methodology is not tight enough. Regarding computational complexity of different algorithms, a comparison is provided in Table 2. The complexity analysis of the convex algorithms is evaluated using [17]. In summary, their operations per iteration are around $\Theta(N^3)$ and the required iteration number is roughly of $\Theta(N^{0.5})$ and thus the overall complexity is $\Theta(N^{3.5})$. On the other hand, the IQML method is less computationally demanding as its complexity is around $\Theta(N^2)$ because the iteration number I is usually a small integer.

The above test is repeated with $N = 128$ while all other parameters are same as before, and the results are plotted in Figures 4, 5, and 6. Basically, the findings are similar to those of Figures 1, 2, and 3, although now the threshold and/or MSE performance improves because of a larger N. In the third test, parameter estimation of a real tone in white Gaussian noise is investigated. The values of the
Table 2: Complexity comparison of different algorithms.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Iteration number</th>
<th>Operations per iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodogram</td>
<td>$O((N + 1)^{1/2})$</td>
<td>$O((N + 1)^2(N - 1))$</td>
</tr>
<tr>
<td>LPP</td>
<td>$O((N + 1)^{1/2})$</td>
<td>$O((N + 1)^2(N - 1))$</td>
</tr>
<tr>
<td>NLS</td>
<td>$O((N + 1)^{1/2})$</td>
<td>$O((N + 1)^2N)$</td>
</tr>
<tr>
<td>IQML</td>
<td>$I = 3$</td>
<td>$O((N - 1)^3)$</td>
</tr>
</tbody>
</table>

sinusoidal parameters and observation length are identical to those of the first study. The MSE results for the amplitude, frequency, and phase are shown in Figures 7, 8, and 9, respectively. Again, the SDR-NLS method gives the best estimation performance with smallest threshold SNR values.

At higher SNRs, the IQML method is also an optimum estimator. Nevertheless, the SDR-LPP scheme is a suboptimal estimator as its MSEs for ω and ϕ cannot attain the CRLBs, although its amplitude estimation performance is optimum when SNR > 5 dB. This experiment has been repeated with a random phase model where ϕ is a uniform random variable between $(0, 2\pi)$ at each trial. The corresponding results are provided in Figures 10, 11, and 12 and we observe that there is no significant difference comparing with the fixed phase scenario. In Figures 13, 14, and 15, we study the MSE performance versus $\omega \in (0, \pi)$ at SNR $= 20$ dB and all parameter settings are identical to the previous test. In addition to the approximate uniform estimation performance while the SDR-LPP scheme has a higher frequency dependence, similar findings are observed.
shown in Figures 22 and 23. All other parameters are kept unchanged. It is seen that the SDR-LPP algorithm shows a better performance compared to IQML method when the frequencies are well separated and their performance is comparably poor for small frequency separation. Note that the MSE results for other sinusoidal parameters are not provided here as they give similar observations.

Finally, parameter estimation performance of SDR approximations for the periodogram and NLS estimators as well as the IQML method for a 2D complex tone is studied and the results are plotted in Figures 24, 25, 26, and 27. The sinusoidal parameters are $A = \sqrt{2}$, $\mu = 0.3\pi$, $\nu = 0.6\pi$, and $\phi = 0.8\pi$ with $M = N = 8$. Although all three methods give optimum estimation accuracy at sufficiently large SNR conditions, the periodogram scheme has the smallest threshold SNRs, while the performance of the SDR-NLS method is similar to that of the IQML approach.

8. Conclusion

A comprehensive study of formulating semidefinite relaxation (SDR) programs for sinusoidal parameter estimation problems has been conducted. We have proposed three common ways to relax the nonconvex maximum likelihood (ML) optimization problems regarding the periodogram, linear prediction polynomial (LPP), and nonlinear least squares (NLS) methods, to convex programs. It is shown that the SDR version of the periodogram gives the best estimation performance for a single complex sinusoid, including the two-dimensional signal model, while the SDR-NLS scheme is optimum for both the single complex and real tone models. Although the SDR-LPP methodology is flexible in the sense that it can be utilized in a wide range of ML cost functions, it only provides optimum estimation performance for a single complex sinusoid.

Appendix

In this appendix, we present the development of the permutation operators $\text{perm}_1(S, M, N)$ and $\text{perm}_2(S, M, N)$ via deriving the mapping of elements for S.

For $\text{perm}_1(S, M, N)$, we aim at mapping the entries between $\text{vec}(S)$ vec $(S)^H$ and vec(S^T) vec (S^{T^H}), so that linear constraints can be established. Mathematically, our task is to relate the indices i, j, k, and l, in the following equation

$$\begin{bmatrix} \text{vec}(S) \text{ vec } (S)^H \end{bmatrix}_{i,j} = \begin{bmatrix} \text{vec}(S^T) \text{ vec } (S^{T^H}) \end{bmatrix}_{k,l}. \quad (A.1)$$

First we consider the relationship between i and k by writing the RHS of (A.1) as:

$$\begin{bmatrix} \text{vec}(S) \text{ vec } (S)^H \end{bmatrix}_{i,j} = [\text{vec}(S)]_i [\text{vec}(S)^H], \quad i, j = 1, 2, \ldots, MN. \quad (A.2)$$

It is clear that $[\text{vec}(S)]_i$ has the form of

$$[\text{vec}(S)]_i = [S]_{x,y}, \quad i = 1, 2, \ldots, MN, \quad y = 1, 2, \ldots, M, \quad x = 1, 2, \ldots, N. \quad (A.3)$$
The indices x and y are related with i by

$$ y = \left\lfloor \frac{i}{N} \right\rfloor + 1, $$

(A.4)

$$ x = i - N \left\lfloor \frac{i}{N} \right\rfloor, \quad i = 1, 2, \ldots, MN, $$

(A.5)

which correspond to reverse operation of vectorization. On the other hand, we have $[S]_{y,x} = [S^T]_{x,y}$ to yield

$$ [S^T]_{x,y} = \left[\text{vec}(S^T) \right]_k, \quad i = 1, 2, \ldots, MN, $$

(A.6)

$$ y = 1, 2, \ldots, M, \quad x = 1, 2, \ldots, N $$

with

$$ k = (x - 1)M + y, $$

(A.7)

which corresponds to the vectorization operation. Substituting (A.4) and (A.5) into (A.7), k is expressed in terms of i as

$$ k = M(i - 1) - (MN - 1) \left\lfloor \frac{i}{N} \right\rfloor + 1. $$

(A.8)

By replacing k with l, and i with j in (A.8), we have

$$ l = M(j - 1) - (MN - 1) \left\lfloor \frac{j}{N} \right\rfloor + 1. $$

(A.9)

The operator of $\text{perm}_1(S, M, N)$ is thus obtained. For $\text{perm}_2(S, M, N)$, we aim at finding the mappings between $\{k, l\}$ and $\{i, j\}$ in

$$ \left[\text{vec}(S) \text{ vec}(S^H) \right]_{i,j} = \left[\text{diag}(S, 0) \text{ diag}(S, 0)^H \right]_{k,l} $$

(A.10)

\[= [S]_{k,k} [S]_{l,l}^H. \]

Note that the valid range of k and l is $[1, \min([M, N])]$, while that of i and j is $[1, MN]$. With the use of (A.2) and (A.10), we get

$$ \text{vec}(S)_{i} = [S]_{k,k}, $$

$$ k = 1, 2, \ldots, \min([M, N]), $$

(A.11)

$$ i = 1, 2, \ldots, MN. $$

It is observed that i and k are related by

$$ i = (k - 1)(M + 1) + 1 = M(k - 1) + k, $$

(A.12)

$$ k = 1, 2, \ldots, \min([M, N]), \quad 1 \leq i \leq MN. $$

By replacing k with l, and i with j in (A.12), we obtain

$$ j = M(l - 1) + l, \quad l = 1, 2, \ldots, \min([M, N]), $$

(A.13)

$$ 1 \leq j \leq MN. $$

This yields the operator of $\text{perm}_2(S, M, N)$.

Acknowledgment

The work described in this paper was supported by a grant from CityU (Project no. 7002499).

References

