Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance

Zhang, Qi; Chan, Antoni B.

Published in:
IEEE Transactions on Neural Networks and Learning Systems

Published: 01/12/2023

Document Version:
Post-print, also known as Accepted Author Manuscript, Peer-reviewed or Author Final version

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1109/TNNLS.2022.3170642

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 18/05/2024
Single-Frame-Based Deep View Synchronization for Unsynchronized Multicamera Surveillance

Qi Zhang*, Student Member, IEEE, and Antoni B. Chan*, Senior Member, IEEE

Abstract—Multicamera surveillance has been an active research topic for understanding and modeling scenes. Compared to a single camera, multicameras provide larger field-of-view and more object cues, and the related applications are multiview counting, multiview tracking, 3-D pose estimation or 3-D reconstruction, and so on. It is usually assumed that the cameras are all temporally synchronized when designing models for these multicamera-based tasks. However, this assumption is not always valid, especially for multicamera systems with network transmission delay and low frame rates due to limited network bandwidth, resulting in desynchronization of the captured frames across cameras. To handle the issue of unsynchronized multiviews, in this article, we propose a synchronization model that works in conjunction with existing deep neural network (DNN)-based multiview models, thus avoiding the redesign of the whole model. We consider two variants of the model, based on where in the pipeline the synchronization occurs, scene-level synchronization and camera-level synchronization. The view synchronization step and the task-specific view fusion and prediction step are unified in the same framework and trained in an end-to-end fashion. Our view synchronization models are applied to different DNNs-based multicamera vision tasks under the unsynchronized setting, including multiview counting and 3-D pose estimation, and achieve good performance compared to baselines.

Index Terms—Crowd counting, deep learning, image matching, pose estimation, surveillance.

I. INTRODUCTION

C OMPARED to single cameras, multicamera networks allow better understanding and modeling of the 3-D world through more dense sampling of information in a 3-D scene [1]. Multicamera based vision tasks have been a popular research field, especially deep learning-related tasks, such as 3-D pose estimation from multiple 2-D observations [2], [3], 3-D reconstruction [4], [5], multiview tracking [6]–[8], multiview crowd counting [9], and re-identification (ReID) [10]–[14]. Usually, it is assumed that the multicameras are temporally synchronized when designing deep neural networks (DNNs) models, i.e., all cameras capture images at the same time point.

Manuscript received July 22, 2021; revised January 4, 2022 and March 22, 2022; accepted April 15, 2022. This work was supported by Research Grant Council of Hong Kong Special Administrative Region (SAR), China, under Grant TR32-101/15-R and Grant CityU11212518. (Corresponding author: Qi Zhang.)

Qi Zhang is with the Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong 518060, China (e-mail: qzhang364-c@my.cityu.edu.hk).

Antoni B. Chan is with the Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China (e-mail: abchan@cityu.edu.hk).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/TNNLS.2022.3170642.

Digital Object Identifier 10.1109/TNNLS.2022.3170642

However, the synchronization assumption for multicamera systems may not always be valid in practical applications due to a variety of reasons, such as dropped camera frames due to limited network bandwidth or system resources, network transmission delays, and so on. Other examples of situations where camera synchronization is not possible include: 1) using images captured from different camera systems; 2) using images from social media to reconstruct the crowd at an event; and 3) performing 3-D reconstruction of a dynamic scene using video from a drone. Thus, handling unsynchronized multicameras is an important issue in the adoption and practical usage of multiview computer vision.

There are several possible methods to fix the problem of unsynchronized cameras. The first method is using hardware-based solutions to synchronize the capture times, such as improving network bandwidth, or by using a central clock to synchronize capture of all cameras in the multiview network. However, this will increase the cost and overhead of the system, and is not possible when there is limited bandwidth. The second method is to capture image sequences from each camera, and then synchronize the images afterward by determining the frame offset between cameras. The fineness of the synchronization depends on the frame rate of the image sequences. However, this method is not effective when acquiring high frame-rate image sequences is not possible due to limited the bandwidth and storage space, or the frame latency between multicameras is random. The final method is to modify the multiview model to handle unsynchronized images, especially for low-frame-rate multicamera systems or random frame latency between multicameras, such as introducing new assumptions or relaxing the original constraints under the unsynchronized setting. Existing approaches for handling unsynchronized multicameras are largely based on optimization frameworks [15], [16], but are not directly applicable to DNNs-based multiview methods, which have seen recent successes in tracking [6], [7], 3-D pose estimation [2], and crowd counting [9], [17].

In this article, we propose a synchronization model that operates in conjunction with existing DNN-based multiview models by using single frames from each camera to deal with low-frame-rate unsynchronized multicamera systems or random frame latency between multicameras. Our proposed model first synchronizes other views to a reference view using a differentiable module, and then the synchronized multiview features are fused and decoded to obtain the task-oriented output. As illustrated in Fig. 1, the synchronization can either
occur after the camera-to-scene (2-D-to-3-D) projection [Fig. 1 (top)] or before the projection [Fig. 1 (bottom)]. Thus, to fully explore these options, we consider two variants of our model that perform synchronization at different stages in the pipeline (see Fig. 2): 1) scene-level synchronization (SLS) performs the synchronization after projecting the camera features to their 3-D scene representation and 2) camera-level synchronization (CLS) performs the synchronization between camera views first, and then projects the synchronized 2-D feature maps to their 3-D representations. In both cases, motion flow between the cameras’ feature maps are estimated and then used to warp the feature maps to align with the reference view (either at the scene-level or the camera-level). With both variants, the view synchronization and the multiview fusion are unified in the same framework and trained in an end-to-end fashion. In this way, the original DNN-based multiview model can be adapted to work in the unsynchronized setting by adding the view synchronization module, thus avoiding the need to design a new model. Furthermore, the synchronization module only relies on content-based image matching and camera geometry, and thus is widely applicable to many DNNs-based multiview tasks, such as crowd counting, tracking, 3-D pose estimation, and 3-D reconstruction.

In summary, the contributions of this article are threefold.

1) We propose an end-to-end trainable framework to handle the issue of unsynchronized multiview images in DNNs-based multiview vision tasks. To the best of our knowledge, this is the first study on DNNs-based single-frame synchronization of multiview cameras.

2) We propose two synchronization modules, SLS and camera-view level synchronization, which are based on image-based content matching that is guided by epipolar geometry. The synchronization modules can be applied to many different DNNs-based multiview tasks.

3) We conduct experiments on multiview counting and 3-D pose estimation from unsynchronized images, demonstrating the efficacy of our approach.

The remainder of this article is organized as follows. We review related works in Section II. In Section III, we propose our single-frame multiview synchronization methods, and in Section IV we present experiments on two applications, multiview crowd counting, and multiview 3-D human pose estimation. Finally, Section V concludes the article.

II. RELATED WORK

In this section, we review DNN-based methods on synchronized multiview images and unsynchronized multiview video tasks, as well as traditional multiview video synchronization methods. We then review DNN-based image matching and flow estimation methods.

A. DNN-Based Synchronized Multicamera Tasks

Multicamera surveillance based on DNNs has been an active research area. By utilizing multiview cues and the strong mapping power of DNNs, many DNNs models have been proposed to solve multiview surveillance tasks, such as multiview tracking and detection [6], [7], [18], crowd counting [9], 3-D reconstruction [4], [5], [19], [20], and 3-D human pose estimation [2], [21]–[24]. Kar et al. [4] proposed a deep learning 3-D reconstruction framework with differentiable feature projection and unprojection steps. Ye et al. [10] proposed the collaboration ensemble learning for ReID with middle-level sharable two-stream network. Iskakov et al. [2] proposed volumetric aggregation of feature maps for 3-D pose estimation. The DNN pipelines used for these multicamera tasks can be generally divided into three stages: the single-view feature extraction stage, the multiview fusion stage to obtain a scene-level representation, and prediction stage. Furthermore, all these DNN-based methods assume that the input multiviews are synchronized, which is not always possible in real multicamera surveillance systems, or in multiview data from disparate sources (e.g., crowd-sourced images). Therefore, relaxing the synchronization assumption can allow more practical applications of multivision tasks in real world.

B. Tasks on Unsynchronized Multicamera Video

Only a few works have considered computer vision tasks on unsynchronized multiview videos. Zheng et al. [15] posed the estimation of 3-D structure observed by multiple unsynchronized video cameras as the problem of dictionary learning. Zhang et al. [16] proposed a multicamera motion segmentation method using unsynchronized videos by combining shape and dynamical information. Takahashi et al. [25] proposed a method of estimating 3-D human pose from multiview videos captured by unsynchronized and uncalibrated cameras by utilizing the projections of joint as the corresponding points. Albl et al. [26] presented a method for simultaneously estimating camera geometry and time shift from video sequences from multiple unsynchronized cameras using minimal correspondence sets. Kuo et al. [27] addressed the problem of aligning unsynchronized camera views by low and/or variable frame rates using the intersections of corresponding object trajectories to match views.

Note that all these methods assume that videos or image sequences are available to perform the synchronization. In contrast, our framework, which is motivated by practical low-fps systems, is solving a harder problem, where only a single
C. Traditional Methods for Multiview Video Synchronization

Traditional synchronization methods usually serve as a preprocessing step for multicamera surveillance tasks. Except audio-based synchronization like [28], most traditional camera synchronization methods rely on videos or image sequences and hand-crafted features for camera alignment/synchronization [29]–[33]. Typical approaches recover the temporal offset by matching features extracted from the videos, e.g., space-time feature trajectories [34]–[36], image features [37], low-level temporal signals based on fundamental matrices [38], silhouette motion [39], and relative object motion [40]. The accuracy of feature matching is improved using epipolar geometry [37], [39] and rank constraints [35]. Caspi et al. [34] proposed to use the space-time feature trajectories matching instead of feature-points matching to reduce the search space. Dai et al. [29] proposed an iterative procedure to achieve the alignment in space and time with the homography assumption in spatial domain. Imre and Hilton [37] utilized image feature correspondences and epipolar geometry to find the corresponding frame indices and computes the relative frame rate and offset by fitting a 2-D line to the index correspondences. Meyer et al. [36] estimated the frame accurate offset by analyzing the trajectories and matching their characteristic time patterns. Pundik and Moses [38] presented a method for online synchronization that relied on the video sequences with known fundamental matrix to compute low-level temporal signals for matching. Rao et al. [35] proposed the rank constraint of corresponding points in two views to measure the similarity between trajectories to avoid the noise sensitivity of the fundamental matrix. Sinha and Pollefeys [39] proposed a Random sample consensus (RANSAC)-based algorithm that computed the epipolar geometry and synchronization of a pair of cameras from the motion of silhouettes in videos. Tresadern and Reid [32] estimated possible synchronization parameters via the Hough transform and refined these parameters using nonlinear optimization methods. Yan and Pollefeys [33] relied on correlating space-time interest point distribution in time between videos which represented events in video that had high variation in both space and time. Gaspar et al. [40] synchronized two independently moving cameras via the relative motion between objects and known camera intrinsic.

The main disadvantages for these traditional camera synchronization methods are:

1) Videos and image sequences are required, which might not be available in practical multicamera systems with limited network bandwidth and storage.
2) A fixed frame rate of the multicameras are usually assumed, which means random frame dropping cannot be handled (except [38]).
3) Feature matching is based on hand-crafted features, which lack representation ability, or known image correspondences, which requires extra manual annotations and may not always be available.
Compared with these methods, we consider a more practical and difficult setting: only single-frames and no videos (no temporal information) are available, which means that these traditional video-based methods are not suitable solutions. These traditional methods perform image content matching using hand-crafted features and traditional matching algorithms, while in contrast, our method uses DNN-based image matching. Because we also assume that only single-frames are available, our method also requires DNN-based motion estimation to estimate a frame’s features after synchronization. Finally, our synchronization module is end-to-end trainable with existing multiview DNNs and thus avoids the redesign of the whole DNNs models to handle unsynchronized multicameras.

D. DNN-Based Image Matching and Flow Estimation

Image matching and optical flow estimation both involve estimating image-to-image correspondences, which is related to frame synchronization of multiviews. We mainly review the DNN-based image matching [41]–[43] or optical flow estimation methods [44]–[46], which inspire us to solve the unsynchronized multicamera based problems in a DNN-based fashion. DNN flow [47] proposed an image matching method based on a DNN feature pyramid in a coarse-to-fine optimization manner. FlowNet [48] predicted the optical flow from DNNs with feature concatenation and correlation. SpyNet [49] combined a classical spatial-pyramid formulation with deep learning and estimated large motions in a coarse-to-fine approach by warping one image to the other at each pyramid level by the current flow estimate and computing an update to the flow. Rocco et al. [41] addressed image correspondence problem using a convolutional neural network architecture that mimics classic image matching algorithms. PWC-Net [50] uses a feature pyramid and one image feature map is warped to the other at each scale, which is guided by the upsampled optical flow estimated from the previous scale. Lai et al. [51] proposed a single network to jointly learn spatiotemporal correspondence for stereo matching and flow estimation.

Our method is related to the DNN-based image matching and optical flow estimation, but the difference is still significant.

1) Typical image/geometric matching only involves either a camera view angle transformation (e.g., camera relative pose estimation, stereo matching) or a small time change in the same view (optical flow estimation), while both factors appear in our problem, which makes our problem harder.

2) Image/geometric matching is directly supervised by the correspondence of two images, while the multiview fusion ground-truth in the 3-D world is used as supervisory signal in our problem.

3) The 2-D-to-3-D projection causes ambiguity for multiview feature fusion, which also causes difficulties for view synchronization.

III. SINGLE-FRAME DNNs MULTICAMERA SYNCHRONIZATION

In this section, we propose a single-frame synchronization model for DNN-based multiview models. The temporal offset between cameras can either be constant latency for each camera (the same offset over time), or random latency (random offsets over time). Similar to most multiview methods [2], [7], [17], [20], we assume that the cameras are static and the cameras’ intrinsic and extrinsic parameters are known. The main idea of our method is to choose a camera view as the reference view, and then use the view synchronization model to warp the other camera views to be synchronized with the reference view. The synchronization model should be general enough to handle both constant and random latencies between cameras, in order to work under various conditions causing desynchronization.

DNNs models for the multicamera surveillance tasks typically consist of three stages (see in Fig. 1): Single-view feature extraction, which extracts single-view features of the input camera views. Multiview feature projection and fusion, where a fixed differentiable projection layer is first adopted to project the single-view features to the 3-D coordinate map and then the projected multiview features are fused together to form the scene-level representation. The projection layer depends on the application task, and our framework can generally handle any differentiable projection layer. For example, for multiview counting [9], the projection maps the 2-D camera view to the 3-D scene plane at the average person height (assuming all camera pixels fall on the same height plane), while for 3-D pose estimation [2], the projection copies features along a view-ray in the 3-D grid, assuming an unknown height of each camera-view pixel. Prediction, where the decoder predicts the final result in the 3-D coordinate map, such as ground-plane density maps [9] or 3-D reconstruction [4].

In Fig. 2, we take multiview crowd counting [9] as an example to show the pipeline of the proposed single-frame-based view synchronization model. In the multiview fusion model, we denote the input multiview frames as \(\{I_{i0}^n\}_{i=0}^{n-1} \), where \(i \) denotes the camera view id and \(n \) is the input camera view number, and superscript \(t_0 \) indicates that the frames are all captured at the same time point \(t_0 \), corresponding to the synchronized multicamera setup. After being fed into the single-view feature extractor \(F \), the extracted features are denoted as

\[
F_{i0}^n = F(I_{i0}^n), \quad i \in \{0, 1, \ldots, n-1\}. \tag{1}
\]

For multiview counting [9], the projection \(P \) maps the 2-D camera view to the 3-D scene plane at the average person height. After projection layer \(P \), the projected multiview features are

\[
F_i^0 = P(F_{i0}^n), \quad i \in \{0, 1, \ldots, n-1\}. \tag{2}
\]

We use \(U \) to denote the fusion operation (e.g., concatenation and max-pooling) of the projected multiview features, thus the fused feature is \(U(F_0^0, \ldots, F_{n-1}^0) \). Finally, the decoder \(D \) is applied to obtain the final prediction \(V_p \)

\[
V_p = D(U(F_0^0, \ldots, F_{n-1}^0)) = D(U(P(F_{00}^0), \ldots, P(F_{n-1}^0))). \tag{3}
\]

However, when the input multicameras frames are not synchronized, denoted as \(\{I_{t0}^n\}_{t=0}^{n-1} \), the capture time for the \(t \)th
view \(t_i \neq t_0 \). Thus, we need to synchronize the camera views first by utilizing the view synchronization model.

The view synchronization model can be embedded into one of the first two stages, synchronizing the extracted single-view features \(\{F_i^e\} \) or projected features \(\{F_i^e\} \), without the need to redesign a new architecture. Thus, we propose two variants of the synchronization model: 1) SLS, where the projected features \(\{F_i^e\} \) from different camera views are synchronized during multiview feature fusion and 2) CLS, where the camera view features \(\{F_i^c\} \) are synchronized before projection and fusion. We present the details of the two synchronization models next. Note that we first consider the case when both synchronized and unsynchronized multiview images are available for training (but not available in the testing stage). We then extend this to the case when only unsynchronized training images are available.

A. Scene-Level Synchronization

SLS works by synchronizing the multiview features after the projection stage in the multiview pipeline. The workflow for SLS is shown in Fig. 2(a).

1) **Synchronization Module:** Without loss in generality, we choose one view (denoted as view 0) as the reference view, and other views are to be synchronized to this reference view.

We first assume that synchronized frame pairs are available in the training stage. The frames are \(I^0_t \) from reference view 0 captured at reference time \(t_0 \), and \(I^0_i \) and \(I^i_t \) from view \(i \) \((i \in [1, 2, \ldots, n-1])\) taken at times \(t_0 \) and \(t_i \). Note that frames \((I^0_0, I^0_i)\) are synchronized, while \((I^0_0, I^i_t)\) are not.

The synchronization module consists of the following stages. First, camera frame feature maps \(F^0_0, F^0_i, F^i_t \) (both synchronized and unsynchronized frames) are extracted and projected to the 3-D world space, resulting in the projected feature maps \(\{F^0_0, F^0_i, F^i_t\} \). Second, synchronization is performed between the reference view 0 and each other view \(i \). The projected feature map \(F^0_0 \) from the reference view is concatenated with the projected feature map \(F^i_t \) from view \(i \), and then fed into a motion flow estimation network \(M_c \) to predict the scene-level motion flow \(w_i \) between view \(i \) at time \(t_i \) and the reference view at time \(t_0 \)

\[
w_i = M_c(\text{Cat}(F^0_0, F^i_t)), \quad i \in [1, \ldots, n-1] \tag{4}
\]

where \(\text{Cat} \) is the concatenation operation. The \(F^0_i \) from view \(i \) is then synchronized with the reference view at time \(t_0 \) using a warping transformation \(W \) guided by \(w_i \), \(W(w_i, F^i_t) \)

\[
F^0_i = W(w_i, F^i_t), \quad i \in [1, \ldots, n-1] \tag{5}
\]

where \(F^0_i \) are the warped projected features of the \(i \)th view synchronized to time \(t_0 \). Note that the warping \(W \) only applies spatial shifting to the feature map \(F^i_t \), i.e., it only changes the feature locations and does not change the feature values. Finally, the reference view features \(F^0_0 \) and estimated warped features of the other views \(\{F^0_i\} \) are fused and decoded to obtain the final scene-level prediction \(V_p \)

\[
V_p = D(U(\{F^0_0, F^0_i, F^0_i\}, \ldots, F^0_{n-1})) \tag{6}
\]

\[
= D(U(\{F^0_0, W(w_i, F^0_i), \ldots, W(w_{n-1}, F^0_{n-1})\})). \tag{7}
\]

In the testing stage, only unsynchronized frames \((I^0_0, I^i_t)\) are available and the forward operations related to frame \(I^0_0 \) are removed from the network.

2) **Training Loss:** Two losses are used in the training stage. The first loss is a task-specific prediction loss \(\ell_p \) between the scene-level prediction \(V_p \) and the ground-truth \(V_{gt} \). For example, for multiview crowd counting \(\ell_p \) is the mean-square error, and \(V_p, V_{gt} \) are the predicted and ground-truth scene-level density maps. The second loss is on the multiview feature synchronization in the multiview fusion stage. Since the synced frame pairs are available during training, the feature warping loss \(\ell_w \) encourages the warped features to be similar to the features of the original synced frame of view \(i \)

\[
\ell_{W}(w_i, F^0_i, F^i_t) = \text{mse}(F^0_i, \tilde{F}^0_i) = \text{mse}(F^0_i, W(w_i, F^i_t)) \tag{8}
\]

where \(\text{mse} \) is the mean-square error loss. Note that the warping \(W \) only applies spatial shifting, and thus the minimization of the warping loss \(\ell_w \) in (8) will be based on the feature alignment via scene-level motion flow \(w_i \) and not global feature value changes (e.g., color correction). Finally, the training loss combines the task loss and the warping loss summed over all nonreference views

\[
\ell = \ell_p(V_p, V_{gt}) + \gamma \sum_{i=1}^{n-1} \ell_{W}(w_i, F^0_i, F^i_t) \tag{9}
\]

where \(\gamma \) is a hyperparameter.

B. Camera View-Level Synchronization

Each image pixels’ height in 3-D space is unknown, and thus the projection operation of multiview DNNs models [2], [9], [17] will either project each pixel to the same assumed height level [9] (causing distortion when the true pixel height is different), or to multiple height levels [2, 17] (duplicating features along the view ray). These projection cause the features to stretch along the view ray in the 3-D scene, which makes their synchronization more difficult due to their imprecise (stretched) and ambiguous (duplicated) nature. Therefore, we also consider synchronization between camera view features before the projection. The pipeline for CLS is presented in Fig. 2(b).

1) **Synchronization Module:** The view synchronization model is applied to each view separately. The camera view features \((F^0_0, F^0_i)\) from the unsynchronized reference view and view \(i \) are first passed through a matching module (see below) and then fed into the motion flow estimation network \(M_c \) to predict the camera-view motion flow \(w_i \) for view \(i \). The warping transformation \(W \) guided by \(w_i \) then warps the camera-view features \(F^0_i \) from view \(i \) to be synchronized with the reference view at time \(t_0 \)

\[
\hat{F}^0_i = W(w_i, F^0_i), \quad i \in [1, \ldots, n-1] \tag{10}
\]

where \(\hat{F}^0_i \) is the warped camera-view features of view \(i \) captured at time \(t_i \), which is synchronized to reference view \(0 \) captured at time \(t_0 \). Finally, the reference and warped camera views are projected

\[
\hat{F}^0_0 = \mathcal{P}(\hat{F}^0_0), \quad \hat{F}^0_i = \mathcal{P}(\hat{F}^0_i), \quad i \in [1, \ldots, n-1] \tag{11}
\]
and then fused and decoded to obtain the scene-level prediction V_p

$$V_p = D(U(F_0^p, F_1^p, \ldots, F_{n-1}^p))$$ \hspace{1cm} (12)

$$= D(U(P(F_0^p), P(\hat{F}_1^p), \ldots, P(\hat{F}_{n-1}^p))).$$ \hspace{1cm} (13)

In the testing stage, only unsynchronized frames ($I_{t_0}^p, I_{t_1}^p$) are available and the forward operations related to frame $I_{t_1}^p$ are removed from the network.

2) Matching Module: We propose three methods to match features to predict the view-level motion flow. The first method concatenates the features (F_0^p, F_1^p) and then feeds them into the motion flow estimation network M_c to predict the motion flow w_i

$$w_i = M_c(C_l(F_0^p, F_1^p)), \quad i \in \{1, \ldots, n-1\}. \quad (14)$$

The second method builds a correlation map C_i between features from each pair of spatial locations in F_0^p and F_1^p

$$C_i((x, y), (x', y')) = F_0^p(x, y)^T F_1^p(x', y') \quad (15)$$

which is then fed into the motion flow estimation network M_c to predict the motion flow w_i

$$w_i = M_c(C_i), \quad i \in \{1, \ldots, n-1\}. \quad (16)$$

The third method incorporates camera geometry information into the correlation map to suppress false matches. If both cameras are synchronized at t_0, then according the multiview geometry, each spatial location in view 0 must match a location in view i on its corresponding epipolar line [Fig. 3(a)]. Thus, in the synchronized setting, detected matches that are not on the epipolar line can be rejected as false matches. For our unsynchronized setting, the matched location in view i remains on the epipolar line only when its corresponding feature/object does not move between times t_0 and t_i. To handle the case where the feature moves, we assume that a matched feature in view i moves according to a Gaussian motion model with standard deviation σ [Fig. 3(b)]. With the epipolar line and motion model, we then build a weighting mask, with high weights on locations with high probability of containing the matched features, and vice versa. Specifically, we set the mask $M_i((x, y), (x', y')) = 1$ if (x', y') is on the epipolar line induced by (x, y), and 0 otherwise, and then convolve it with a 2-D Gaussian with standard deviation σ [Fig. 3(c)]. We then apply the weight mask M_i on the correlation map $\hat{C}_i = M_i \odot C_i$, which will suppress false matches that are not consistent with the scene and motion model. Thus, the motion flow w_i is

$$w_i = M_c(\hat{C}_i) = M_c(M_i \odot C_i), \quad i \in \{1, \ldots, n-1\}. \quad (17)$$

3) Multiscale Architecture: Multiscale feature extractors are used in multicamera tasks like crowd counting [9] or to refine the final prediction via multiscale prediction fusion [50], [51]. Therefore, we next show how to incorporate multiscale feature extractors with our CLS model. Instead of performing the view synchronization in each scale separately, the motion flow estimate of neighbor scales is fused to refine the current scale’s estimate (see Fig. 4). In particular, let there be m scales in the multiscale architecture and j denotes one scale in the scale range $\{1, 2, \ldots, m\}$, with m the largest scale. The multiscale predicted motion flow are fused as follows.

1) When $j = 1$ (the smallest scale), the correlation map $C_i^{(1)}$ of scale 1 is fed into the motion flow estimation net to predict the motion flow $w_i^{(1)}$ for scale 1.

2) For scales $j > 1$, first the difference between the correlation map $C_i^{(j)}$ and the upsampled correlation map of the previous scale $u(C_i^{(j-1)})$ is fed into the motion flow estimation net to predict the residual of the motion flow between two scales, denoted as $\hat{w}_i^{(j)}$.

3) The refined motion flow of scale j is

$$w_i^{(j)} = u(p(w_i^{(j-1)}) + \hat{w}_i^{(j)}). \quad (18)$$

4) Training Loss: Similar to SLS, a combination of two losses (scene-level prediction and feature synchronization) is used in the training stage. The scene-level prediction loss is the same as before. The feature synchronization loss encourages the warped camera-view features at each scale to match the features of the original synchronized frame

$$\ell_W = \text{mse}(F_i^{b_0(i)}, \hat{F}^{b_0(i)}) \quad (19)$$

$$= \text{mse}(F_i^{b_0(i)}, W(u_i^{(1)}, F_i^{b_0(i)})). \quad (20)$$

Similar to SLS, the warping function W only applies spatial shifting, and thus the minimization of ℓ_W in (20) will be based on feature alignment rather than feature value changes. Finally, the training loss is the combination of the prediction loss and the synchronization loss summed over all nonreference views.

1) No extra steps are needed to incorporate multiscale features with SLS because the synchronization occurs after the feature projection.
and scales
\[\ell = \ell_p(V_p, V_q) + \gamma \sum_{i=1}^{n-1} \sum_{j=1}^{m} \ell_w(w_{i,j}, F_{i,j}^{v}, F_{i,j}^{u}) \] (21)
where \(\gamma\) is a hyperparameter.

C. Training With Only Unsynchonized Frames
In the previous models, we assume that both synchronized and unsynchronized multiview frames are available during training. For more practical applications, we also consider the case when only unsynchronized multiview frames are available for training. In this case, for the SLS, the warping feature loss \(\ell_w\) is replaced with a similarity loss \(\ell_s\) on the projected features, to indirectly encourage synchronization of the projected multiview features
\[\ell_s = \text{mean}(1 - \cos(F_i^v, W(w_i, F_i^u))) \] (22)
where “cos” is the cosine similarity between feature maps (along the channel dimension), and “mean” is the mean over all spatial locations. Similarly, for CLS, the warping feature loss \(\ell_w\) is replaced by the similarity loss of the projected features \(\ell_s\). Note that the similarity loss \(\ell_s\) is applied after the projection—thus the warping function only needs to predict the residual motion in the camera view, which is the object motion in time, so as to align the projected features.

IV. EXPERIMENTS
We validate the effectiveness of the proposed view synchronization model on two unsynchronized multiview tasks: multiview crowd counting and multiview 3-D human pose estimation.

A. Implementation Details
The synchronization model consists of two parts: motion estimation network and feature warping layer. The input of the motion estimation network is the unsynchronized multiview features (the concatenation of the projected features) for SLS or the matching result of the 2-D camera-view features for CLS, and the output is a two-channel motion flow. The layer setting of the motion estimation network is shown in Table I. The feature warping layer warps the features from other views to align with the reference views, guided by the estimated motion flow. The feature warping layer is based on the image resampler from the spatial transformation layer in [52].

The synchronized multiview model consists of feature extraction module, projection module, and multiview prediction module. For the multiview counting model [9], Table II shows the model setting of the feature extraction and multiview prediction module. For the 3-D pose estimation model [2], the feature extraction module consists of a ResNet-152 network, a series of transposed convolution layers and a 1 \(\times\) 1 convolution layer to predict joint heatmaps [53], and the V2V-PoseNet [54] is used for multiview prediction, which is based on hour-glass network [55].

<table>
<thead>
<tr>
<th>Layer</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv 1</td>
<td>128 (\times) 5 (\times) 5 (\times) 5</td>
</tr>
<tr>
<td>conv 2</td>
<td>128 (\times) 5 (\times) 5 (\times) 5</td>
</tr>
<tr>
<td>conv 3</td>
<td>64 (\times) 5 (\times) 5 (\times) 5</td>
</tr>
<tr>
<td>conv 4</td>
<td>64 (\times) 5 (\times) 5 (\times) 5</td>
</tr>
<tr>
<td>conv 5</td>
<td>32 (\times) 5 (\times) 5 (\times) 5</td>
</tr>
<tr>
<td>conv 6</td>
<td>2 (\times) 5 (\times) 5 (\times) 5</td>
</tr>
</tbody>
</table>

B. Experiment Setup
We test four versions of our synchronization model: scene-level synchronization (denoted as SLS), and CLS using concatenation, correlation, or correlation with epipolar-guided weights (denoted as CLS-cat, CLS-cor, CLS-epi) for the matching module (Section III-B.2). The synchronization models are trained with the multiview DNNs introduced in each application later.

We consider two training scenarios: 1) both synchronized and unsynchronized training data is available and 2) only unsynchronized training data is available, which is the more difficult setting. For the first training scenario, we compare against two comparison methods: BaseS trains the DNN only on the synchronized data; BaseSU fine-tunes the BaseS model using the unsynchronized training data (using the full training set). For the second training scenario, BaseU trains the DNN directly from the unsynchronized data. Note that traditional synchronization methods [29]–[33] are based on videos (temporal information) and assume high-fps cameras with fixed frame rates, which are unavailable in our problem setting. Thus, traditional and video-based synchronization methods are not suitable for comparison.

To test the proposed method, we first create an unsynchronized multiview dataset from the existing multiview datasets (the specific datasets are introduced in each application later). In particular, suppose the frame sequence in the reference view is captured at times \(t_0 + k \Delta t\), where \(\Delta t\) is the time offset between neighbor frames, \(k \in \{0,\ldots, N - 1\}\) and \(N\) is the number of frames. For view \(i\), the unsynchronized frames are captured at times \(t_0 + k \Delta t + \delta_{i,k}\), where \(\delta_{i,k}\) is the desynchronization time offset between view \(i\) and the reference view. We consider two settings of the desynchronization offset. The first is a constant latency for each view, \(\delta_{i,k} = \tau_i\), for some constant value \(\tau_i\). The second is random
UNSYNCHRONIZED MULTIVIEW COUNTING: EXPERIMENT RESULTS FOR TRAINING SET WITH BOTH SYNCHRONIZED AND UNSYNCHRONIZED FRAMES. TWO DESYNCHRONIZATION SETTINGS ARE TESTED: CONSTANT LATENCY AND RANDOM LATENCY. THE EVALUATION METRIC IS MAE AND NAE.

<table>
<thead>
<tr>
<th></th>
<th>PETS2009</th>
<th>CityStreet</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss</td>
<td>model</td>
<td>constant</td>
</tr>
<tr>
<td>nTS2009</td>
<td>BaseU</td>
<td>MAE NAE</td>
</tr>
<tr>
<td>ℓp</td>
<td>BaseU</td>
<td>7.21 0.200</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>SLS</td>
<td>4.49 0.143</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>CLS-cat</td>
<td>4.18 0.130</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>CLS-cor</td>
<td>4.13 0.135</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>CLS-epi</td>
<td>3.95 0.130</td>
</tr>
</tbody>
</table>

UNSYNCHRONIZED MULTIVIEW COUNTING: EXPERIMENT RESULTS FOR TRAINING SET WITH ONLY UNSYNCHRONIZED FRAMES UNDER CONSTANT AND RANDOM LATENCY AND USING GROUND-TRUTH CALCULATED FROM UNSYNCHRONIZED MULTIVIEW FRAMES.

<table>
<thead>
<tr>
<th></th>
<th>PETS2009</th>
<th>CityStreet</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss</td>
<td>model</td>
<td>constant</td>
</tr>
<tr>
<td>ℓp</td>
<td>BaseU</td>
<td>MAE NAE</td>
</tr>
<tr>
<td>ℓp</td>
<td>SLS</td>
<td>6.80 0.229</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>CLS-cat</td>
<td>7.41 0.237</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>CLS-cor</td>
<td>5.91 0.201</td>
</tr>
<tr>
<td>ℓp, ℓW</td>
<td>CLS-epi</td>
<td>5.72 0.184</td>
</tr>
</tbody>
</table>

C. Unsyncronized Multiview Counting

We first apply our synchronization model to unsynchronized multiview counting system, whose bandwidth is assumed to be limited and the frame latency between cameras can be fixed or random. Here, we adopt the multiview multiscale fusion model (MVMS) from [9], which is the state-of-the-art model for multiview counting DNNs. We embed the synchronization models in the MVMS model to handle the unsynchronized multiview frames for crowd counting.

1) Datasets and Metric: Two multiview counting datasets used in [9], PETS2009 [56] and CityStreet [9], are selected and desynchronized for the experiments.

PETS2009 contains three views (cameras 1, 2, and 3), and the first camera view is chosen as the reference view. The input image resolution (w × h) is 384 × 288 and the ground-truth scene-level density map resolution is 152 × 177. There are 825 multiview frames for training and 514 frames for testing. The frame rate of PETS2009 is 7 fps (Δt = 1/7s). For constant frame latency, τt ∈ {5 s, −5 s} is used for cameras 2 and 3, and κt = 5 s for random latency.

CityStreet proposed in [9] consists of three views (cameras 1, 3, and 4), and camera 1 is chosen as the reference view. The input image resolution is 676 × 380 and the ground-truth density map resolution is 160 × 192. There are 500 multiview frames, and the first 300 are used for training and the remaining 200 for testing. The frame rate of CityStreet is 1 fps (Δt = 1 s). For constant latency, τt ∈ {3 s, −3 s} for cameras 3 and 4, and κt = 3 s for random latency.

Following [9], the mean absolute error (MAE) and normalized absolute error (NAE) of the predicted counts on the test set are used as the evaluation metric

\[
\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |c_i - \hat{c}_i|
\]

\[
\text{NAE} = \frac{1}{N} \sum_{i=1}^{N} \frac{|c_i - \hat{c}_i|}{c_i}
\]

where ci is the ground truth count and \(\hat{c}_i\) is the predicted count, and N is the number of testing images.

2) Results for Training With Synced and Unsynced Frames:

The experimental results using training with synchronized and unsynchronized frames are shown in Table III. The hyperparameter γ = 1 is used for feature warping loss. On both datasets, our CLS methods, CLS-cor and CLS-epi, perform better than other methods, including the baselines, demonstrating the efficacy of our approach. SLS performs worse than CLS methods, due to the ambiguity of the projected features from multiviews. Furthermore, after projection to the ground-plane, the crowd movement between frames \(I^0_t\) and \(I^t_0\) on the ground-plane is less salient due to the low resolution of the ground-plane feature map. CLS-cat performs worse among the CLS methods because simple concatenation of features cannot capture the image correspondence between different views to estimate the motion flow. Finally, the two baselines (BaseS and BaseSU) perform badly on CityStreet because of the larger scene with larger crowd movement between neighboring frames (due to lower frame rate).

3) Results for Training With Only Unsynchronized Frames:

The experiment results by training with only unsynchronized frames (which is a more practical real-world case) are shown in Table IV. Since the synchronized frames are not available, the MVMS model weights are trained from scratch using only unsynchronized data. Our models are trained with the similarity loss \(\ell_s\) (with hyperparameter \(γ = 1000\)), which encourages alignment of the projected multiview features. Generally, without the synchronized frames in the training stage, the counting

\(\text{fps} = \frac{1}{10} \times \text{frames rate}\)

We obtained the higher fps version from the dataset authors.
5) Ablation Study on the Multiscale Architecture: We next present an ablation study on the multiscale architecture for the multiview counting in Table VI. Generally, the multiscale architecture performs better than single-scale architecture models, and the proposed CLS-cor/CLS-epi can perform better than SLS or CLS-cat under both single-scale or multiscale architecture, and under both training paradigms (sync and unsync, or only unsync).

6) Ablation Study on Color Correlation: The feature warping module only applies spatial shifting on the features of the unsynced views, i.e., it does not change the values (e.g., color) of the unsynced features [see (5) and (10)]. To demonstrate this, we calculate the average statistics (mean and variance) of the feature maps before and after feature warping of Views 2 and 3 of CityStreet, and present the results in Table VII. The statistics of the feature maps do not change much after performing feature warping, and thus the performance improvement of the feature warping module is not due to color correction (feature value changes).

We further perform an ablation study to show that image color correction by itself cannot solve the frame desynchronization problem. On the CityStreet dataset, in the baseline model (MVMS [9]), we add a learnable “color correction” layer, comprising an extra 1×1 convolution layer (32 channels) in the branches of the other camera views before the projection and fusion step. The results are denoted as “color correction” in Table VIII. The error for using “color correction” is worse than the proposed SLS, CLS-cor, and CLS-epi. The reason is that the desynchronization issue comes from the capture time difference between camera views, which is better solved by spatial shifting of features rather than color correction (changing feature values).

7) Model Size and Running Speed Comparison: We present the model size (number of parameters) and running speed of the baseline methods and the proposed SLS, CLS-cat, CLS-cor, and CLS-epi in Table IX. The input resolution for the correlation step of the camera-view synchronization module is 160×95.

We present an ablation study on the multiscale architecture for the multiview counting in Table VI. Generally, the multiscale architecture performs better than single-scale architecture models, and the proposed CLS-cor/CLS-epi can perform better than SLS or CLS-cat under both single-scale or multiscale architecture, and under both training paradigms (sync and unsync, or only unsync).

Table VI

<table>
<thead>
<tr>
<th>Loss/Training data</th>
<th>Method</th>
<th>Multi-scale</th>
<th>Single-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_p, ℓ_W</td>
<td>SLS</td>
<td>8.02</td>
<td>8.10</td>
</tr>
<tr>
<td>sync and unsync</td>
<td>CLS-cat</td>
<td>8.57</td>
<td>8.77</td>
</tr>
<tr>
<td></td>
<td>CLS-cor</td>
<td>7.99</td>
<td>8.25</td>
</tr>
<tr>
<td></td>
<td>CLS-epi</td>
<td>7.93</td>
<td>8.12</td>
</tr>
<tr>
<td>ℓ_p, ℓ_s</td>
<td>SLS</td>
<td>8.33</td>
<td>8.95</td>
</tr>
<tr>
<td>unsync</td>
<td>CLS-cat</td>
<td>9.17</td>
<td>9.34</td>
</tr>
<tr>
<td></td>
<td>CLS-cor</td>
<td>7.77</td>
<td>8.62</td>
</tr>
<tr>
<td></td>
<td>CLS-epi</td>
<td>7.70</td>
<td>8.59</td>
</tr>
</tbody>
</table>

Table VII

<table>
<thead>
<tr>
<th>Method</th>
<th>view 2</th>
<th>view 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>before warping</td>
<td>0.686 ± 0.106</td>
<td>0.777 ± 0.704</td>
</tr>
<tr>
<td>after warping</td>
<td>0.670 ± 0.976</td>
<td>0.761 ± 0.692</td>
</tr>
</tbody>
</table>

Table VIII

<table>
<thead>
<tr>
<th>Method</th>
<th>constant</th>
<th>random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color correction</td>
<td>8.90/0.108</td>
<td>8.64/0.100</td>
</tr>
<tr>
<td>SLS</td>
<td>8.50/0.105</td>
<td>8.33/0.100</td>
</tr>
<tr>
<td>CLS-cat</td>
<td>8.48/0.102</td>
<td>9.17/0.110</td>
</tr>
<tr>
<td>CLS-cor</td>
<td>8.02/0.098</td>
<td>7.77/0.093</td>
</tr>
<tr>
<td>CLS-epi</td>
<td>8.04/0.095</td>
<td>7.70/0.094</td>
</tr>
</tbody>
</table>

Table IX

<table>
<thead>
<tr>
<th>Method</th>
<th>Paras. Num</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaseS/BaseSU/BaseU</td>
<td>853.4K</td>
<td>21.9</td>
</tr>
<tr>
<td>SLS</td>
<td>3.7M</td>
<td>8.3</td>
</tr>
<tr>
<td>CLS-cat</td>
<td>3.7M</td>
<td>8.9</td>
</tr>
<tr>
<td>CLS-cor</td>
<td>37.3M</td>
<td>7.2</td>
</tr>
<tr>
<td>CLS-epi</td>
<td>37.3M</td>
<td>3.6</td>
</tr>
</tbody>
</table>
TABLE X

UNSYNCHRONIZED 3-D HUMAN POSE ESTIMATION: EXPERIMENT RESULTS WITH RANDOM LATENCY. FOR "CLS-COR" AND "CLS-EPIL" THE CONSISTENCY LOSS HYPERPARAMETER \(\gamma = 0.01 \). THE EVALUATION METRIC IS MPJPE AND ABSOLUTE POSITION MPJPE (LEFT/RIGHT).

<table>
<thead>
<tr>
<th>Latency</th>
<th>BaseSU</th>
<th>BaseU</th>
<th>CLS-cor((\gamma = 0))</th>
<th>CLS-epi</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/50s</td>
<td>62.8/859.2</td>
<td>78.6/978.2</td>
<td>131.7/151.5</td>
<td>69.4/69.2</td>
</tr>
<tr>
<td>32/50s</td>
<td>26.5/27.8</td>
<td>49.9/55.0</td>
<td>69.4/69.2</td>
<td>34.4/34.4</td>
</tr>
<tr>
<td>64/50s</td>
<td>37.3/38.9</td>
<td>50.9/56.0</td>
<td>71.0/70.7</td>
<td>39.2/39.2</td>
</tr>
</tbody>
</table>

TABLE XI

DETAILED PERFORMANCE FOR UNSYNCHRONIZED 3-D HUMAN POSE ESTIMATION WITH RANDOM LATENCY \(\kappa_i = 8/50 \) s. THE EVALUATION METRIC IS MPJPE.

<table>
<thead>
<tr>
<th>Pose</th>
<th>BaseS</th>
<th>BaseSU</th>
<th>BaseU</th>
<th>CLS-COR((\gamma = 0))</th>
<th>CLS-epi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directions</td>
<td>42.8</td>
<td>29.3</td>
<td>34.3</td>
<td>26.1</td>
<td>25.8</td>
</tr>
<tr>
<td>Discussion</td>
<td>60.7</td>
<td>28.4</td>
<td>38.8</td>
<td>27.3</td>
<td>26.7</td>
</tr>
<tr>
<td>Eating</td>
<td>60.7</td>
<td>26.4</td>
<td>28.8</td>
<td>23.9</td>
<td>24.0</td>
</tr>
<tr>
<td>Greeting</td>
<td>65.8</td>
<td>19.7</td>
<td>32.5</td>
<td>25.3</td>
<td>24.3</td>
</tr>
<tr>
<td>PhoneCall</td>
<td>52.2</td>
<td>25.7</td>
<td>31.0</td>
<td>24.7</td>
<td>24.5</td>
</tr>
<tr>
<td>Posing</td>
<td>49.7</td>
<td>22.0</td>
<td>27.6</td>
<td>24.1</td>
<td>24.0</td>
</tr>
<tr>
<td>Purchases</td>
<td>67.5</td>
<td>24.4</td>
<td>32.5</td>
<td>28.7</td>
<td>27.4</td>
</tr>
<tr>
<td>Sitting</td>
<td>35.2</td>
<td>22.6</td>
<td>36.6</td>
<td>23.8</td>
<td>24.0</td>
</tr>
<tr>
<td>SittingDown</td>
<td>37.4</td>
<td>25.7</td>
<td>66.6</td>
<td>25.9</td>
<td>26.8</td>
</tr>
<tr>
<td>Smoking</td>
<td>42.2</td>
<td>25.7</td>
<td>31.2</td>
<td>24.8</td>
<td>24.3</td>
</tr>
<tr>
<td>TakingPhoto</td>
<td>50.9</td>
<td>23.4</td>
<td>44.2</td>
<td>28.2</td>
<td>27.9</td>
</tr>
<tr>
<td>Waiting</td>
<td>44.3</td>
<td>19.5</td>
<td>35.8</td>
<td>23.2</td>
<td>23.8</td>
</tr>
<tr>
<td>Walking</td>
<td>161.1</td>
<td>31.9</td>
<td>32.1</td>
<td>27.0</td>
<td>30.2</td>
</tr>
<tr>
<td>WalkingDogs</td>
<td>91.5</td>
<td>34.2</td>
<td>54.8</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>WalkingTogether</td>
<td>126.8</td>
<td>33.9</td>
<td>31.8</td>
<td>25.5</td>
<td>26.8</td>
</tr>
<tr>
<td>Average</td>
<td>62.8</td>
<td>26.5</td>
<td>37.3</td>
<td>25.8</td>
<td>25.8</td>
</tr>
</tbody>
</table>

8) Visualization Results: Example results are shown in Fig. 5. Generally, the proposed synchronization methods CLS-epi and CLS-cor can predict better quality density maps, such as in the red box regions in the figure, where comparison methods tend to over-count these regions due to the same person being counted multiple times in unsynchronized frames. Furthermore, we also observe that the predicted density map is with better quality when synchronized frames are available compared to training with only unsynchronized frames. Finally, the prediction results are improved if similarity loss is enforced when training with only unsynchronized frames, such as the methods CLS-epi and CLS-cor on PETS2009.

D. Unsynchronized 3-D Human Pose Estimation

We next apply our synchronization model to the unsynchronized 3-D human pose estimation task. The DNNs model for 3-D human pose estimation is adopted from [2], which proposed two learnable triangulation methods for multiview 3-D human pose from multiple 2-D views: algebraic triangulation and volumetric aggregation. Here, we use volumetric aggregation (softmax aggregation) as the multiview fusion DNN in the experiments.

1) Datasets and Metrics: We use the Human3.6M dataset, which consists of 3.6 million frames from four synchronized 50 Hz digital cameras along with the 3-D pose annotations. We follow the preprocessing step recommended in [57], and sample one of every 64 frames (\(\Delta t = 64/50 \)) for the testing set, and sample one of every four frames (\(\Delta t = 4/50 \)) as the training set. The first camera view is always used as the reference view (if the first camera view is missing, the second one is used). We test desynchronization via random frame latency, with \(\kappa_i \in \{8/50, 32/50, 64/50\} \) s, and only use unsynchronized data for training. Following [2], mean per point position error (MPJPE) and absolute position MPJPE are used as the metric for evaluation. In training, the single-view backbone uses the pretrained weights from the original 3-D pose estimation model. Baseline methods

BaseS, BaseSU and BaseU are compared with our proposed camera-view synchronization models CLS-cor and CLS-epi.

2) Experiment Results: The experiments results are presented in Table X. The original 3-D pose estimation method (BaseS, BaseSU, and BaseU) cannot perform well under the unsynchronized test condition, especially under large latencies (e.g., 64/50 s). Our camera-view synchronization methods performs better than the baseline methods, with the performance gap increasing as the latency increases. Using similarity loss ℓ_s improves the performance of our models, and adding epipolar-guided weights can suppress false matches and further reduces the error. The detailed performance for each pose type under different frame latency settings is shown in Tables XI–XIII. From the tables, we can find that the proposed methods can perform especially better on the poses with larger movement between unsynchronized frames, e.g., Walking, WalkingDogs and WalkingTogether.

3) Ablation Study on γ for 3-D Pose Estimation: The ablation study on hyperparameter γ for the method CLS-epi for 3-D pose estimation is presented in Table XIV. In general, $\gamma = 0.01$ achieves better performance than other weights.

4) Model Size and Running Speed Comparison: We present the model sizes and running speed comparisons of our proposed models and the baselines for 3-D pose estimation in Table XV. The input resolution for the correlation step of the camera-view synchronization module is 48×48. As the original synchronized 3-D pose estimation model [2] is already very large, the running speed of the proposed models CLS-cor and CLS-epi is similar to the baseline methods BaseS/BaseSU/BaseU.

5) Visualization Results: Visualization results of unsynchronized 3-D pose estimation are presented in Figs. 6 and 7. In the figures, the first row shows the input unsynchronized multi-view frames, and the top labels indicate the unsynchronized frame latency. Rows 2–8 show the 2-D key-joints projected from 3-D poses of Ground-truth, BaseS, BaseSU, BaseU, CLS-cor ($\gamma = 0$), CLS-cor, and CLS-epi, respectively, where synchronized frames are displayed for better visualization.
Fig. 6. Examples of unsynchronized 3-D pose estimation (Walking Dogs). The first row shows the input unsynchronized multiview frames and the top labels indicate the unsynchronized frame latency (in seconds). The remaining rows show the ground-truth key joints and the predicted results. Blue lines are the 2-D key joints projected from 3-D poses, and the synchronized frames are used for better visualization. CLS-epi achieves the best performance among all methods, especially the prediction result of arms in view 0.
Fig. 7. Examples of unsynchronized 3-D pose estimation (Greeting). Blue lines are the 2-D key-joints projected from 3-D poses, and the synchronized frames are used for better visualization. CLS-epi achieves the best performance.
effect. In Fig. 6, BaseU fails on the unsynchronized input, and
CLS-epi achieves the best performance among all methods,
especially the prediction of the arms in view 1. In Fig. 7,
the CLS-epi also achieves the best performance among all
comparison methods.

V. CONCLUSION

In this article, we focus on the issue of unsynchronized
cameras in DNNs-based multiview computer vision tasks.
We propose two view synchronization models based on single
frames (not videos) from each view, SLS and CLS. The two
models are trained and evaluated under two training settings
(with or without synchronized frame pairs), and a similarity
loss of the projected multiview features is proposed to boost
the performance when synchronized training pairs are not
available. Furthermore, to show its generality to different
conditions of desynchronization, the proposed models are
tested with desynchronization based on both constant and
random latency. Finally, the proposed models are applied
to unsynchronized multiview counting and unsynchronized
3-D human pose estimation, and achieve better performance
compared to the baseline methods. Overall, CLS model using
correlation and epipolar weights (CLS-epi) performs best
among the proposed models.

In addition to unsynchronized multicamera crowd counting
and 3-D pose estimation, the proposed model can also be
applied to other multicamera vision tasks, such as multici-
camera detection [7], multicamera tracking [18]. In these
tasks, multicameras may also be unsynchronized due to no
synchronization clock or limited network bandwidth. As these
DNN models [7], [18] generally follow the three-stage pipeline
(single-view feature extraction, multiview projection and
fusion, and prediction), our proposed synchronization modules
can be inserted to adapt them to unsynchronized frames.

In our current model, image content matching is used
for view synchronization, while the 2-D-to-3-D projection
for multiview fusion relies on known camera parameters.
The multicamera surveillance tasks themselves require known
calibration for better multiview fusion. Note that our pro-
posed view synchronization module based on correlation maps
(CLS-cor) does not require camera calibrations due to the
single-frame basis, and still achieves good performance. When
the calibrations are provided, epipolar constraint can be uti-
lized to achieve better results (CLS-epi). In future work, the
2-D–3-D projection in the original multiview models could
be replaced with camera self-calibration modules, which can
allow the model to handle unsynchronized and uncalibrated
multicameras.

table xv
model parameter number and running speed comparison of
the baseline methods base/base/su/baseu and the proposed
CLS-COR and CLS-EPI for 3-D pose estimation on
the human3.6M dataset. The input resolution for
the correlation step of the camera-view synchronization module is 48 × 48.

<table>
<thead>
<tr>
<th>Method</th>
<th>Par. Num</th>
<th>PPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base/Su</td>
<td>80.6M</td>
<td>3.7</td>
</tr>
<tr>
<td>CLS-cor</td>
<td>86.3M</td>
<td>3.4</td>
</tr>
<tr>
<td>CLS-epi</td>
<td>86.3M</td>
<td>3.0</td>
</tr>
</tbody>
</table>

REFERENCES

view 3D pose estimation through camera-disentangled representation,” in Proc.
for dense unscripted pedestrian detection,” in Proc. IEEE/CVF Conf.
ing for multi-human 3D pose estimation at over 100 FPS,” in Proc.
pp. 3279–3288.
density maps and multi-view fusion CNNs,” in Proc. IEEE/CVF Conf.
[10] M. Ye, X. Lan, Q. Leng, and J. Shen, “Cross-modality person re-
identification via modality-aware collaborative ensemble learning,” IEEE
learning for person re-identification,” in Proc. IEEE/CVF Int. Conf.
tion invariant and instance spreading feature for softmax embedding,”
Feb. 2022.
reconstruction from unsynchronized videos,” in Proc. IEEE Int. Conf.
multi-camera motion segmentation from unsynchronized videos,” in
with 3D Gaussian kernels,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 12837–12844.
[18] Y. He, J. Han, W. Yu, X. Hong, X. Wei, and Y. Gong, “City-scale multi-
camera vehicle tracking by semantic attribute parsing and cross-camera
unified approach for single and multi-view 3D object reconstruction,” in
aware 3D reconstruction from single and multi-view images,” in
[23] H. Joo et al., “Panoptic studio: A massively multiview system for
social motion capture,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
multiple views for marker-less 3D human pose annotations,” in Proc.
p. 6988–6997.

Qi Zhang (Student Member, IEEE) received the B.Eng. degree from the Huazhong University of Science and Technology (HUST), Wuhan, China, in 2014, the M.Eng. degree from the University of Chinese Academy of Sciences (UCAS), Beijing, China, in 2017, and the Ph.D. degree in computer science from City University of Hong Kong, Hong Kong, in 2021.

He was a Post-Doctoral Researcher with City University of Hong Kong, from 2021 to 2022. He currently works as the Distinguished Associate Researcher with the Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. His research interests include multivcamera surveillance and crowd counting.

Antoni B. Chan (Senior Member, IEEE) received the B.S. and M.Eng. degrees in electrical engineering from Cornell University, Ithaca, NY, USA, in 2000 and 2001, respectively, and the Ph.D. degree in electrical and computer engineering from the University of California, San Diego (UCSD), San Diego, CA, USA, in 2008.

He is currently a Full Professor with the Department of Computer Science, City University of Hong Kong, Hong Kong. His research interests include computer vision, machine learning, pattern recognition, and music analysis.