Salt-assisted construction of hydrophilic carbon nitride photocatalysts with abundant water molecular adsorption sites for efficient hydrogen production

Wang, Chong; Lu, Yichun; Wang, Zequn; Liao, Hongwu; Zhou, Weiming; He, Yuhe; Osman, Sameh M.; An, Meng; Asakura, Yusuke; Yamauchi, Yusuke; Wang, Liwei; Yuan, Zhanhui

Published in:
Applied Catalysis B: Environmental

Online published: 05/08/2024

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.apcatb.2024.123902

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Salt-assisted construction of hydrophilic carbon nitride photocatalysts with abundant water molecular adsorption sites for efficient hydrogen production

Chong Wanga,1, Yichun Lub,1, Zequn Wangc, Hongwu Liaoa, Weiming Zhoua,1, Yuhe Heb, Sameh M. Osmand, Meng Anc,1, Yusuke Asakurae,1, Yusuke Yamauchif,1,11, Liwei Wangh,1, Zhanhui Yuana,11

a College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
b School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
c College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
d Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
e Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
f School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
g Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, South Korea
h College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian Province 350108, China

1 Corresponding authors.
E-mail addresses: zhouweiming721@126.com (W. Zhou), anmeng@sust.edu.cn (M. An), asa.y@nagoya-u.jp (Y. Asakura), wlw@mju.edu.cn (L. Wang), zhanhuiyuan@fafa.edu.cn (Z. Yuan).
11 These authors contributed equally: Chong Wang and Yichun Lu.

https://doi.org/10.1016/j.apcatb.2024.123902
Received 4 January 2024; Received in revised form 23 February 2024; Accepted 28 February 2024
Available online 2 March 2024

ARTICLE INFO

Keywords:
Carbon nitride
Photocatalysis
Hydrogen production
Hydrophilic
Salt-assisted synthesis

ABSTRACT

Polymer carbon nitride (PCN), as an affordable and easily prepared photocatalyst, has acquired extensive attention for hydrogen production. However, bulk carbon nitride material exhibits poor dispersibility in water due to the relatively inert surface which limits its quantum efficiency in photocatalytic hydrogen production. In this study, a hydrophilic carbon nitride (HCN) is successfully synthesized by a novel salt-assisted heating process. The heightened water adsorption capacity may contribute additional active sites conducive to the photocatalytic hydrogen production reaction. Meanwhile, potassium ion doping and material size reduction greatly enhance the charge transfer and separation ability of HCN. Consequently, HCN exhibits highly efficient photocatalytic activity for hydrogen production, achieving a rate of 392 μmol·h-1, which is 16 times greater than that of pristine PCN. The simply developed synthetic strategy adopted here provides a novel concept for functionalizing carbon nitride and opening a distinct pathway for the construction of exceptionally efficient photocatalytic systems.

1. Introduction

Substituting fossil fuels with sustainable clean energy is a novel strategy to reduce carbon emissions and simultaneously alleviate the growing energy crisis [1–4]. The photocatalytic water splitting for hydrogen production reaction, which converts renewable and pollution-free solar energy into carbon-free hydrogen fuel, has attracted extensive attention [5–8]. Theoretically, photocatalytic hydrogen production can be carried out under mild conditions as long as the thermodynamic conditions of proton reduction are satisfied [9]. However, constructing a simple and efficient hydrogen production system in practice is still quite challenging, as the light absorption capacity, efficiency, and durability of photocatalysts limit the further utilization of hydrogen production reactions [10–12]. Thus, discovering a highly active, low-cost, and long-lived photocatalyst is critical for the broader implementation of photocatalytic hydrogen production [13]. Moreover, designing such a type of photocatalyst requires materials that can be well dispersed in water to provide more reaction sites and have excellent charge dissociation/transfer capabilities.

Polymeric carbon nitride (PCN) has recently been demonstrated as a highly promising photocatalyst for hydrogen production, due to its elevated stability, tunable electronic structure, and ease of fabrication.
Generally, nitrogen-rich precursors can be directly converted into PCN through a thermal polymerization reaction [17]. The photocatalytic performance of PCN is significantly improved by the introduction of nitrogen into the structure, enhancing charge separation efficiency. Simultaneously, the reaction solution underwent repeated evacuation to eliminate air completely. A 300 W xenon lamp served as the illumination source, with different cutoff filters employed to regulate the wavelength range. To maintain the reaction solution’s temperature at 12 °C, circulating water was employed. The gases generated by the photocatalytic reaction were analyzed using an online gas chromatography equipped with thermal conductivity detector. Argon was used as the carrier gas.

The determination of the apparent quantum yield (AQY) for the H₂ production involved substituting the Xe lamp with various wavelengths of light-emitting diodes (LEDs) equipped with band-pass filters. The AQY was calculated as follows:

\[
AQY = \frac{\text{The amount of reaction electrons}}{\text{The incident photons}} \times 100\%
\]

(1)

2.2. Characterization

The chemical structure of the samples was determined employing Fourier-transform infrared spectra (Thermo IS-50), 13C NMR spectra (Bruker Advance III 500 spectrometer), and X-ray photoelectron spectroscopy (Thermo ESCALAB250). The properties of HCN in water were analyzed by measuring the Zeta potential and size distribution of HCN solution (Malvern Zetasizer Nano ZS). The crystal structure of the samples was characterized through X-ray diffraction (Miniflex, Rigaku). The morphologies of the samples were scrutinized through field emission scanning electron microscopy (JSM-6700F) and transmission electron microscopy (Zeiss 912 microscope). The optical characteristics of the samples were assessed via UV-Vis diffuse reflectance spectra (PerkinElmer UV/Vis/NIR Spectrometer Lambda 950) and photoluminescence spectra (Horiba Fluorolog TCSPC spectrophotometer) and electron paramagnetic resonance (Bruker model A300 spectrometer). Microscopic and pore structure details of the sample were ascertained through nitrogen adsorption and desorption analyses (Micromeritics ASAP 2460 surface area and porosity analyzer).

2.4. Photocatalytic tests

2.4.1. Photocatalytic hydrogen production test

50 mg of catalyst was introduced into a reactor containing 100 mL of water, supplemented with an additional 10 mL of triethanolamine. Then, the loading of 3 wt% Pt cocatalyst was conducted by directly dissolving H₂PtCl₆ into the system. Simultaneously, the reaction solution underwent repeated evacuation to eliminate air completely. A 300 W xenon lamp served as the illumination source, with different cutoff filters employed to regulate the wavelength range. To maintain the reaction solution’s temperature at 12 °C, circulating water was employed. The gases generated by the photocatalytic reaction were analyzed utilizing an online gas chromatography equipped with thermal conductivity detector. Argon was used as the carrier gas.

The determination of the apparent quantum yield (AQY) for the H₂ production involved substituting the Xe lamp with various wavelengths of light-emitting diodes (LEDs) equipped with band-pass filters. The AQY was calculated as follows:

\[
AQY = \frac{\text{The amount of reaction electrons}}{\text{The incident photons}} \times 100\%
\]

(1)
and the resulting sample was air-dried to obtain the working electrode.

2.6. Computational method

The Vienna ab-initio Simulation Package (VASP), based on density functional theory (DFT), served as the computational framework for all calculations. Electron-ion interactions were simulated using the Projector-augmented wave (PAW) method with the GGA-PBE functional. In order to mitigate the bandgap underestimation associated with the standard GGA-PBE functional, supercells comprising 72 and 36 atoms, each with a vacuum layer of 10 Å, were selected to represent the pristine BCN and HCN models, respectively. A cut-off energy of 450 eV was uniformly applied to both supercell models, as previously specified. Structural optimization was conducted until the total energy difference per atom reached below 1×10^{-5} eV, and the Hellmann-Feynman forces acting on each atom were reduced to less than 0.01 eV\cdotÅ$^{-1}$. For the visualization of the HOMO and LUMO orbital distributions, an isosurface value of 0.02 e\cdotÅ$^{-3}$ was set. Consistent with previous research, phonon density of states (DOS) was acquired through self-consistent DFT total energy calculations.

The adsorption energy E_{binding} were calculated as follows:

$$E_{\text{binding}} = E_{\text{tot,mo}} - E_{\text{tot,eq}}$$

where $E_{\text{tot,mo}}$ denoted the total energy of the system after the displacement of water molecules to locations 15 Å away from the BCN and HCN surfaces. $E_{\text{tot,eq}}$ signified the total energy of the system when water molecules were positioned at equilibrium sites on the BCN and HCN surfaces. The energy of each system was computed using density functional theory (DFT) implemented in the Vienna Ab initio Simulation

Fig. 1. (a) The synthetic route of HCN and BCN. (b) The proposed formation route of HCN and BCN.
Package (VASP) with projector augmented wave (PAW) pseudopotentials. The exchange-correlation function employed the Becke-Lee-Yang-Parr (BLYP) variant of the generalized gradient approximation (GGA). The convergence criteria for the total energy and ionic force were set 1×10^{-8} eV and 0.02 eVÅ\(^{-1}\). The plane-wave cutoff energy was established at 400 eV.

3. Results and discussion

3.1. The evidence of catalyst hydrophilicity enhancement and potassium doping

The HCN catalyst is prepared using a salt-assisted synthetic route as illustrated in Fig. 1a. The preparation procedure for the BCN catalyst is conducted in the same manner without KCl added, and the possible synthesis process is described in Fig. 1b. To verify the chemical structure of HCN and its potential hydrophilic, Fourier-transform infrared (FT-IR) spectroscopy is employed. As shown in Fig. 2a, both HCN and BCN samples exhibit a characteristic heptazine ring breathing vibration peak around 810 cm\(^{-1}\). The plane-wave cutoff energy was established at 400 eV.

IR) spectroscopy is employed. As shown in Fig. 2a, both HCN and BCN samples exhibit a characteristic heptazine ring breathing vibration peak around 810 cm\(^{-1}\). The plane-wave cutoff energy was established at 400 eV.

The FT-IR test results, it can be concluded that cyano groups are present in the HCN structure.

X-ray photoelectron spectroscopy (XPS) is conducted to fully determine the chemical composition of the HCN sample (Fig. 2a). The high-resolution C 1 s spectrum of HCN can be resolved into three distinct peaks, 288.3 (sp\(^2\)-bound carbon in the aromatic ring), 286.4 (heptazine-ring carbon next to imide bridge), and 284.8 eV (graphite carbon atoms), respectively (Fig. 2c) [37]. Notably, the peak intensity at 286.4 eV in HCN is significantly enhanced compared to BCN, indicating the presence of cyano group in the HCN structure [38]. In the high-resolution N 1 s spectrum of HCN, three peaks at 398.7, 398.5 eV are identified, which can be correlated to the C-NH\(_2\), N\(_2\)C, and N\(_3\)C, respectively (Fig. 2c) [39]. As displayed in Fig. 2e, the peak intensity of HCN at 531.7 eV (C-OH) is much higher than in BCN, suggesting that HCN may exhibit better hydrophilic and dispersive properties [40]. The K 2p XPS signals are observed at 295.7 and 292.9 eV, confirming the successful doping of the K element in the HCN frameworks (Fig. 2f). The XPS elemental analysis results show a significant increase in the K and O elements content in the sample with salt-assisted synthesis and dialysis (Table S1). Moreover, there are no apparent signals corresponding to Cl 2p (Fig. S3a) and S 2p (Fig. S3b), indicating the absence of Cl and S elements in the structure.

To examine the role of the abundant hydroxyl group on the surface of HCN, contact angle (CA) experiments are conducted. HCN exhibits a
cambered water droplet with a contact angle of 18.6°, which is significantly lower than that of BCN (54.7°), indicating its superior hydrophilicity (Fig. 3a). Furthermore, HCN can be well dispersed in water, whereas BCN cannot form a stable dispersion under the same conditions (Fig. S4). HCN exhibits a more negative Zeta potential (-54 mV) compared to BCN (-47 mV) at pH of 7.2, indicating that the HCN solution is more stable. (Fig. 3b). The particle sizes of dispersed HCN show a good Gaussian distribution with an average diameter of 290 nm (Fig. 3c). These results demonstrate that HCN can form a quasi-homogeneous photocatalytic system. In addition, when a small amount of acid is added as a trigger, a hydrogel can be formed (Fig. S5). The content of this section will be the focus of our future research work.

Salt-assisted synthesis leads to a difference in the chemical structure, resulting in the crystal structure change. As shown by X-ray diffraction (XRD), BCN exhibits two peaks situated at 13.2 and 27.3°, corresponding to the (100) and (002) planes of carbon nitride, respectively (Fig. 3d) [41]. In contrast, the XRD pattern of HCN differs from that of BCN. The diffraction peaks due to periodic in-plane heptazine structures (8.1 and 9.9°) of HCN are shifted to lower angles, indicating an expanded lattice after the salt-assisted synthesis, suggesting possible doping of K into the structure [42]. Moreover, the main diffraction peak of HCN attributed to the PCN layer stacking shifts to higher angles compared to BCN, suggesting a decreased layer spacing, which facilitates electron transport between layers. Additionally, the full width at half-maximum (FWHM) of the (002) plane for HCN is narrower than BCN, indicating an improved short-range order degree of HCN (Fig. S6). Thus, it can be concluded that the salt-assisted synthesis not only changes the crystal structure of the catalyst but also introduces cyano and hydroxyl groups on the surface.

In scanning electron microscopy (SEM) image (Fig. 4a), HCN solid exhibits an irregular sheet and particle stacking, similar to the traditional BCN (Fig. S7). Subsequently, we evaporated a drop of dispersed HCN solution on the silicon wafer for scanning electron microscopy testing. It is evident that HCN is more dispersed and has a smaller particle size in water (Fig. 4b). Interestingly, further diluting the dispersed HCN solution reduces the particle size, which facilitates maximum exposure of the active sites to water (Fig. 4c). In addition, a decrease in the size of the photocatalyst will also reduce the distance of carrier migration, allowing more carriers to migrate to the surface, thereby promoting the photocatalytic reaction. In order to verify the invertibility of this phenomenon, the dispersed HCN solution was heated. As water dwindles in the system, dispersed particles and sheets gradually accumulate and eventually form large-scale lumps (Fig. S8). Due to this aggregation, the HCN solid does not display a higher surface area than BCN (Fig. S9).

The morphological and structural details of HCN are investigated by transmission electron microscopy (TEM). Several layers of irregular nanosheet stacking structures are observed in the low-magnification TEM image (Fig. 4d). The crystalline quality of the HCN solid is further visualized through the high-resolution TEM (HRTEM)
observation. The average spacing of periodic lattice fringes is determined to be 0.32 nm, aligning with the (002) facets of HCN (Fig. 4e). The individual crystalline domains are observed in Fig. 4f, which are well-matched with the superimposed structural models. These results confirm that the HCN has a short-range ordered crystalline structure, which agrees with the XRD results. Moreover, the results of the element mapping test indicate a uniform distribution of C, N, and K in the HCN sample (Fig. S10).

3.2. Enhanced light absorption and charge separation due to salt-assisted synthesis

To examine the impact of salt-assisted synthesis on catalyst properties, a series of characterizations are conducted. Compared with BCN, the color of the HCN sample transitions from a light-yellow hue to orange-yellow, and the optical absorption edge of the HCN gets red-shifted (Fig. 5a). Based on the Tauc plots, the bandgap of BCN is calculated to be 2.68 eV, while that of HCN is 2.60 eV (Fig. S11). Additionally, the absorption intensity of HCN is significantly higher than that of BCN at both short and long wavelengths, which can be related to the structural differences (Fig. S12). The XPS valence band (VB) spectra are collected to study the band structure of catalysts (Fig. S13). The XPS-VB edges of BCN and HCN are 1.68 and 1.53 eV, approximately. The flat band potential of the catalyst is ascertained through Mott-Schottky tests [43]. In Fig. S14, the flat band potentials of BCN and HCN are examined to be −0.12 and −0.25 V versus reverse hydrogen electrode, respectively. Combining the above results, the VB maximum values are computed to be 1.56 eV for BCN and 1.28 eV for HCN. According to the energy band formula, the corresponding conduction band (CB) minimum positions of HCN and BCN are calculated to be −1.32 and −1.12 eV, respectively. From the band structure of the catalyst (Fig. S15), it is evident that the CB minimum position of HCN shifts towards a more negative potential, suggesting an increased driving force for proton reduction.

Photoluminescence (PL) spectra are then conducted to reveal the separation/transfer of charge carriers in HCN and BCN samples. As shown in Fig. 5b, salt-assisted synthesis significantly reduces the PL intensity of carbon nitride, confirming that the charge recombination rate is drastically inhibited in the HCN sample [44]. Moreover, the time-resolved PL measurement results (Fig. S16) indicate that the PL decay of HCN (average lifetime of 2.62 ns) is much faster than that of BCN (average lifetime of 5.24 ns), suggesting that the electrons and holes on the HCN surface may participate more quickly in the following redox reactions. Owing to the short lifetime of electrons on the surface of HCN, the electron paramagnetic resonance (EPR) intensity under illumination is also significantly weakened (Fig. S17).

Subsequently, the separation/transfer efficiency of the charge carriers is analyzed by surface photovoltage spectroscopy (SPV). The positive and negative signals represent the migration of holes and electrons toward the surface [45]. As shown in Fig. 5c, the SPV intensity of BCN and HCN are 1.68 and 1.53 eV, respectively. The flat band potentials of BCN and HCN are examined to be 0.12 and 0.25 V versus reverse hydrogen electrode, respectively. The SPV response intensity of HCN is significantly higher than that of BCN. For the same type of semiconductor, the higher the surface photovoltage value, the better the photo-generated charge carriers separation efficiency. To examine the dynamic behavior of photo-generated charge carriers, transient-state surface photovoltage (TPV) is carried out. HCN exhibits a higher photovoltage response, indicating that more photo-generated carriers separate and migrate to the catalyst surface (Fig. 5d) [46]. All the above results confirm that the HCN sample with salt-assisted introduction has better charge transfer performance.

To further elucidate the effect of salt-assisted synthesis on the charge separation/transport properties of catalysts, electrochemical impedance spectroscopy (EIS), photocurrent and linear sweep voltammetry (LSV) measurements are performed. A marked decrease in Nyquist plots diameter for HCN is observed in Fig. 5e, demonstrating that the charge transfer resistance of HCN is much smaller than BCN [47]. As shown in Fig. 5f, HCN exhibits an enhanced photocurrent response, strongly indicating that the transport of photo-generated carriers is promoted [48]. Moreover, the cathodic current density of HCN surpasses that of BCN significantly, signifying superior hydrogen production activity in HCN (Fig. S18). The overpotential of HCN is lower than that of BCN, suggesting stronger surface reducibility of HCN.

To further uncover the mechanism of enhanced light absorption and charge separation properties, the density of states of BCN and HCN is shown in Fig. 6a. Compared with BCN, the conduction band of HCN is
significantly lowered. The corresponding projected density of states in Fig. 5b, including \(\sigma \), \(\pi \) and \(d \) electrons, clearly shows that more \(\sigma \) electron distribution of HCN contributes to the narrowed bandgap, thereby improving the light harvesting of HCN in the visible region. The calculated HOMO and LUMO of BCN in Fig. 6c show a uniform distribution of electrons and holes. In contrast, HCN exhibits an apparent spatial separation between the hole of HOMO and the electron of LUMO (Fig. 6d). The above analysis demonstrates that HCN favors charge separation and light harvesting in the visible region. Considering the enhanced light absorption capacity and improved charge separation efficiency, we speculate that HCN may exhibit better performance in photocatalytic reactions.

3.3. Measurement of photocatalytic activity

The hydrogen production reaction is utilized as a probe reaction to investigate the effect of salt-assisted photocatalytic efficiency. The photocatalytic hydrogen production of HCN and BCN is evaluated by loading 3 wt% Pt as a co-catalyst and utilizing triethanolamine as the hole sacrificial agent. As shown in Fig. 7a, the photocatalytic hydrogen evolution rate of BCN is about 24 \(\mu \text{mol} \cdot \text{h}^{-1} \). In contrast, HCN can efficiently catalyze the photocatalytic hydrogen production reaction, and its hydrogen production rate reaches 392 \(\mu \text{mol} \cdot \text{h}^{-1} \), which is a remarkable 16-fold enhancement over BCN, highlighting the advancement of the quasi-homogeneous catalytic system. Notably, the hydrogen evolution rate of HCN even surpasses that of the reported carbon nitrides when TEOA is used as a sacrificial agent (Table S2). Due to the salt-assisted synthesis, the improved light absorption intensity of HCN samples results in a significantly higher hydrogen production rate under long-wavelength irradiation (\(\lambda > 470 \text{ nm} \)) compared to BCN (Fig. 7b).

Subsequently, the photocatalytic stability of HCN is tested through multiple-cycle tests. Fig. 7c shows no noticeable deactivation of photocatalytic activity even after four cycle tests, indicating that the HCN sample exhibits excellent photostability. The characterizations after the reaction further demonstrate the stability of the HCN structure. Fig. S19a indicates that the overall FT-IR spectra of HCN remain similar, with only a decrease in peak intensity at 995 and 1150 cm\(^{-1} \) before and after the reaction. XPS results indicate that the content of K element in the HCN structure decreases after the reaction (Fig. S19b), likely due to the cation exchange between HCN and water. Furthermore, it is worth noting that no significant changes in crystal structure are observed (Fig. S20). Therefore, the structure of HCN can be considered relatively stable.

Furthermore, wavelength-dependent apparent quantum yield (AQY) reactions are measured. As displayed in Fig. 7d, AQY is estimated to be 24.1% at 420 nm for the HCN sample. Even at 470 nm of the absorption band edge, HCN still exhibits an AQY of 4.61%. In contrast, the AQYs of BCN are only 3.88% at 420 nm and 1.11% at 470 nm (Fig. S21). Notably, the AQY value of hydrogen production is well matched to the light absorption of the sample, indicating that incident photons drive the photocatalytic reaction. These results directly illustrate that the quasi-homogeneous photocatalytic system does have a decisive impact on

![Fig. 5.](image-url)
enhancing hydrogen production efficiency. The mechanism of photocatalytic hydrogen production is shown in Fig. S22 [49–51]. First, HCN is excited by visible light to generate electron-hole pairs. The photogenerated electrons then migrate to the catalyst surface and reduce the adsorbed H\(^+\) to H\(_2\). Likewise, photogenerated holes oxidize the sacrificial agent TEOA.

We further study the photocatalytic activity of HCN for H\(_2\)O\(_2\) production. The photocatalytic H\(_2\)O\(_2\) production was performed by dispersing catalyst in a water/isopropanol mixed solution at room temperature in an O\(_2\) atmosphere. As displayed in Fig. S23, the photocatalytic H\(_2\)O\(_2\) production rate is estimated to be as high as 305 \(\mu\)mol h\(^{-1}\) for HCN, which is 13.8 times that of BCN. The significantly improved H\(_2\)O\(_2\) production of HCN also demonstrates the superiority of this quasi-homogeneous photocatalytic system again. The mechanism of photocatalytic H\(_2\)O\(_2\) production is shown in Fig. S24a. Photogenerated electrons react with H\(^+\) and oxygen to generate hydrogen peroxide, and isopropanol is oxidized by photogenerated holes. The fitting results of the rotating disk electrode test show that the average number of transferred electrons is about 1.93, indicating that the process of HCN catalyzing oxygen reduction to generate hydrogen peroxide is mainly a one-step two-electron process (Fig. S24b).

3.4. Mechanism and method universality

To clarify the adsorption of molecules on the interface, density functional theory (DFT)-based first-principles calculations were implemented to obtain the binding energies of water molecule at the BCN and HCN interfaces, respectively. The simulated snapshots of the equilibrium position of water molecules at the BCN and HCN interfaces are shown in Figs. 8a and 8b, it can be clearly observed that the HCN interface has a stronger adsorption effect on water molecule than the BCN interface. To further investigate the adsorption mechanism of water molecules on various interfaces, the deformation charge density is further calculated in Fig. S25. Fig. S25a shows that there is a significant overlap between the electron cloud of water molecules and the electron cloud of HCN surface. Additionally, as shown in Fig. S25b, O atom is adsorbed near K atom on the HCN surface that have lost electrons, while there is no apparent adsorption site on the BCN surface (Fig. S25c and S25d). It indicates a strong interaction between the atoms, leading to the stable adsorption of water molecules on the HCN surface.

To demonstrate the universality of this salt-assisted synthesis method, we introduce KCl into the thermal polymerization process for synthesizing carbon nitride materials from other precursors. Through...
XRD testing, it can be concluded that the samples exhibit Potassium Poly (Heptazine Imide) (K-PHI) type crystal structures after the introduction of KCl (Fig. S26) [52]. All these carbon nitride samples involving KCl in synthesis processes exhibit higher photocatalytic hydrogen production activity under visible light irradiation than bulk samples (Fig. 8c). The influence of potassium content in the structure on the photocatalytic activity is also discussed. As shown in Fig. S27, the photocatalytic activity of the material exhibited initial enhancement followed by a decline with the increase of potassium content. The reason for the decrease in photocatalytic activity may be that the sample contains more potassium chloride that has not been removed, resulting in a reduction in the amount of photocatalyst. In addition, we also compared the effects of different alkali metal salts on photocatalytic activity. Potassium and sodium are equally effective, while lithium is relatively weak (Fig. S28). These results confirm that the salt-assisted synthesis method is an efficient and universal way to prepare high-performance carbon nitride.

Fig. 7. Photocatalytic H₂ production tests of HCN and BCN under visible light irradiation (a) λ > 420 nm and (b) λ > 470 nm. (c) Time course of H₂ production over HCN (λ > 420 nm). (d) Wavelength-dependent AQY of H₂ evolution over HCN (right axis) and UV-Vis diffuse reflectance spectrum of HCN (left axis).

Fig. 8. Snapshots of adsorption of water molecule on (a) BCN surface and (b) HCN surface. C, N, O and K atoms are denoted with gray, blue, white, red and purple spheres, respectively. (c) The experiments on the universality of salt-assisted synthesis.
tem holds potential for broad applications in other photocatalytic en
approach to improve the intrinsic activity of carbon nitride-based pho
ciency (420 nm) compared to bulk PCN. This research paves a promising
hydrogen production and a 6-fold increase in apparent quantum effi
photocatalyst exhibits a 16-fold enhancement in photocatalytic
ficiency of photo-generated charge carriers. Thus, the as-obtained HCN
materials. In crystal structure essentially enhance the separation and transfer ef
–
–
administering and checking grammatical errors in our manuscript. The authors also
interest or personal relationships that could have appeared to influence
the work reported in this paper.

declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

data availability

Data will be made available on request.

Acknowledgments

This work was supported by the Department of Science and Technology of Fujian Province (No. 2022H6021), the Forestry Science and Technology Project of Fujian Province (No. 2023FRK27), the Youth Innovation Team of Shaanxi Universities (No. 21JP017), the Joint Research Funds of the Department of Science and Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLY-Z-025), the JST-ERATO Yamaduchi Materials Space-Tectonics Project (JPMJER2003), and the UQ-Yonsei International Research Project. This work used the Queensland node of the NCRIS-enabled Australian National Fabrication Facility (ANFF). We express our gratitude for English editing software, such as Grammarly and ChatGPT, for refining language and checking grammatical errors in our manuscript. The authors also extend their appreciation to the Depuyshipt for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research (IFPSUOR3-615-4).

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.123902.

References
