Automated exploitation of deep learning for cancer patient stratification across multiple types

Sun, Pingping; Fan, Shijie; Li, Shaochuan; Zhao, Yingwei; Lu, Chang; Wong, Ka-Chun; Li, Xiangtao

Published in: Bioinformatics

Published: 01/11/2023

Document Version: Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License: CC BY

Publication record in CityU Scholars: Go to record

Published version (DOI): 10.1093/bioinformatics/btad654

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher’s copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Data and text mining

Automated exploitation of deep learning for cancer patient stratification across multiple types

Pingping Sun1, Shijie Fan1, Shaochuan Li1-2, Yingwei Zhao1, Chang Lu1,3-*, Ka-Chun Wong4, Xiangtuo Li2-*,

1School of Information Science and Technology, Northeast Normal University, Jilin, China
2School of Artificial Intelligence, Jilin University, Jilin, China
3School of Psychology, Northeast Normal University, Jilin, China
4Department of Computer Science, City University of Hong Kong, Hong Kong China

*Corresponding author. School of Psychology, Northeast Normal University, 5268 Renming Street, Jilin 130024, China. E-mail: luc816@nenu.edu.cn (C.L.);
School of Artificial Intelligence, Jilin University, 2699 Qianjin street, Jilin 130015, China. E-mail: lixt314@jlu.edu.cn (X.L.)

Abstract

Motivation: Recent frameworks based on deep learning have been developed to identify cancer subtypes from high-throughput gene expression profiles. Unfortunately, the performance of deep learning is highly dependent on its neural network architectures which are often hand-crafted with expertise in deep neural networks, meanwhile, the optimization and adjustment of the network are usually costly and time consuming.

Results: To address such limitations, we proposed a fully automated deep neural architecture search model for diagnosing consensus molecular subtypes from gene expression data (DNAS). The proposed model uses ant colony algorithm, one of the heuristic swarm intelligence algorithms, to search and optimize neural network architecture, and it can automatically find the optimal deep learning model architecture for cancer diagnosis in its search space. We validated DNAS on eight colorectal cancer datasets, achieving the average accuracy of 95.48%, the average specificity of 98.07%, and the average sensitivity of 96.24%, respectively. Without the loss of generality, we investigated the general applicability of DNAS further on other cancer types from different platforms including lung cancer and breast cancer, and DNAS achieved an area under the curve of 95% and 96%, respectively. In addition, we conducted gene ontology enrichment and pathological analysis to reveal interesting insights into cancer subtype identification and characterization across multiple cancer types.

Availability and implementation: The source code and data can be downloaded from https://github.com/user113/DNAS-main. And the web server of DNAS is publicly accessible at 119.45.145.120:5001.

1 Introduction

Colorectal cancer (CRC) is a very heterogeneous disease and one of the leading causes of cancer-related deaths worldwide (Biller and Schrag 2021). Unfortunately, the number of deaths is anticipated to keep rising even in developed countries (Rahib et al. 2014). Until recently, most CRC studies have focused on histopathological classification, single-molecular condition identification such as microsatellite instability (MSI) or different mutation status of major cancer genes (Fessler et al. 2016). Nevertheless, due to the diversity and complexity of CRC, the precise diagnosis and treatment of CRC patients poses a huge challenge.

Recently, a consensus molecular subtype-based classification has demonstrated potential as a framework to provide subtype-specific directed therapy of colorectal cancer in the clinical setting (Singh et al. 2021). Indeed, the CRC Subtyping Consortium (CRCSC) collected thousands of samples of four consensus molecular subtypes (CMSs) (Guinney et al. 2015): CMS1 (microsatellite instability immune), CMS2 (canonical), CMS3 (metabolic), and CMS4 (mesenchymal), and each consensus molecular subtype has its own distinctive molecular, biological, and clinical features. However, the massive high-throughput gene expression profiles have brought major challenges for researchers in the design of computational models to identify cancer subtypes at different levels (Gao et al. 2019); For instance, Guinney et al. (2015) proposed a machine learning model called CMS classifier based on random forest and single-sample predictor to predict CMSs. Cascianelli et al. (2020) discussed the performance of regularized multiclass logistic regression (mLR) to differentiate the molecular subtypes of breast cancer. Wang et al. (2020) improved the random forest method for lung cancer classification. However, these computational methods using machine learning to address gene expression profiles often suffer from high dimensionality and computational scalability.

Deep learning models are made up of multiple neuron layers with non-linear activation and have been successfully applied in various fields including image processing and text classification. A few deep neural network (DNN) models have been developed to identify cancer subtypes from gene expression data; for instance, Gao et al. (2019) proposed DeepCC to adopt deep learning in predicting CMSs and demonstrated its competitive performance over traditional machine learning. Sirinukunwattana et al. (2021) proposed an image-based deep learning model for consensus molecular subtype....
classification of colorectal cancer. Chen et al. (2020) proposed to combine supervised deep learning with the unsupervised k-means method to predict breast cancer subtypes. Liu et al. (2021) developed a pipeline to classify triple-negative breast cancer by combining deep embedding learning for feature extraction with genetic algorithm for identification. The inception network is popularly adopted for identifying different cancer as it has promising performance in processing images (Banerjee et al. 2017, Alom et al. 2019). Lee et al. (2020) proposed a graph convolutional network based on the KEGG pathway to identify cancer subtypes. Unfortunately, the performance of most deep learning models is still under-explored and there is significant room for improvement of learning abilities. Meanwhile, most deep learning models lack of biological interpretability.

To address these challenges, we developed a fully automated deep neural architecture search model (DNAS) for diagnosing CMSs in colorectal cancer data. On the one hand, DNAS has the ability to self-execute feature engineering by scanning diverse and complex colorectal cancer data for extracting critical latent features and then integrating them to facilitate faster learning, thus effectively bridging the gap of existing machine learning methods that are insensitive to high-dimensional sparse data. The experimental results show that DNAS has better dimensionality reduction performance whether compared with traditional machine learning methods or deep learning methods. Meanwhile, compared to the deep model architectures explicitly designed for the corresponding tasks, DNAS equipped with generalization strategies allows automatic search for the best neural network architecture on a given issue, which helps non-trained biological researchers to select the optimal model hyperparameters without much effort. For T-SNE on lung cancer subtype, the results demonstrate that the latent embedding representation of DNAS is biologically interpretable, while other deep learning approaches might not. We tested DNAS on eight real datasets from CRCSC and the results demonstrated that our model provided competitive performance over other CMSs classifiers. After that, we investigated the general applicability of DNAS by identifying intrinsic subtypes of other cancer across different platforms. The experimental results on lung cancer and breast cancer indicate that DNAS has robust prediction and dimensionality reduction performance on different cancer subtypes from different cross-platform data. Subsequently, we conducted several experiments on an external cohort to validate DNAS performance and robustness. In addition, an biological analysis on the external cohort was conducted to reveal insights into colorectal cancer.

2 Materials and methods

2.1 Data collection

In this study, we collected eight independent colorectal cancer datasets with gene expression data based on Affymetrix HG133plus2 platform: GSE13067 (n = 67), GSE13294 (n = 140), GSE14333 (n = 135), GSE17536 (n = 38), GSE20916 (n = 71), GSE2109 (n = 266), GSE37892 (n = 118), and GSE39582 (n = 519). All the datasets can be downloaded from the official repository of the international CRC subtyping consortium on Synapse (https://www.synapse.org/#!Synapse:syn2623706/wiki/) (downloaded on 3 January 2021). The details of the eight datasets are summarized in Supplementary Table S1. To visualize those eight datasets, we applied four dimensional reduction methods to project the datasets onto 2D spaces as visualized in Supplementary Fig. S1. It can be seen that consensus molecular subtypes are hardly distinguishable by linear models. Therefore, it is urgent and necessary to develop nonlinear models to identify the consensus molecular subtypes from the colorectal cancer datasets. Meanwhile, we collected a The Cancer Genome Atlas (TCGA) CRC set (n = 512) which based on RNA sequencing platform. The TCGA expression data can be downloaded from CRSC Synapse repository (https://www.synapse.org/#!Synapse:syn2623706/wiki/). The CMSs clinical labels with all CRC samples can be downloaded from CRCSC Synapse repository (https://www.synapse.org/#!Synapse:syn2623706/wiki/).

We conducted two experiments to validate the performance of DNAS: the lung cancer study and the breast cancer study. In the lung cancer study, two lung cancer subtypes were collected from TCGA (https://portal.gdc.cancer.gov/), which consists of 415 adenocarcinoma (LUAD) and 417 squamous cell carcinoma (LUSC) samples. The visualization of lung cancer dataset is summarized in Supplementary Fig. S1, which demonstrate the two intrinsic subtypes of lung cancer is hardly diagnosed. The breast cancer data can be downloaded from the METABRIC project (Curtis et al. 2012), which consists of 144 normal breast tissue samples and 1989 primary breast tumor samples. The PAM50 subtypes were obtained as the class label of breast cancer. The data distribution in Supplementary Fig. S1 also demonstrate the breast cancer subtypes is very complexity and hardly distinguished.

2.2 Adaptive deep learning model (ADLER)

ADLER is a feed-forward DNN assembled by multilayer perceptron with adaptive loss. ADLER uses the sequential alternating representation layers with nonlinear activation functions to learn the potential features, followed by representation layers with SoftMax activation functions as the outputs of ADLER to compute the probability of each CMSs. Mathematically, it is defined as follows:

\[f_l(x) = \varphi_l(W_l f_{l-1}(x) - \theta_l). \] (1)

while x is the input of our model, \(f_{l-1}(x) \) is the \(l-1 \)-th layer’s output, \(\theta_l \) is the \(l \)-th layer’s threshold, and \(\varphi_l \) is the \(l \)-th layer’s activate function.

To reduce the influence of overfitting, the dropout layer and batch normalization layer were added into our model to identify CMSs. The dropout layer intended to drop some of the neurons, and it is described as follows:

\[R = \text{Bernoulli}(p), \] (2)

\[f'(x) = R \ast f(x), \] (3)

where the Bernoulli function is used to randomly generate a binary mask vector with Bernoulli trial probability \(p \), \(f(x) \) and \(f'(x) \) are the input and output of the dropout layer, respectively.

To tolerate a wide range of learning rate and relieve the impact of initialization, Batch Normalization (BN) is employed to assemble the ADLER, which is described as follows:
where \(x_i \in \{x_1^1, x_2^1, \ldots , x_m^m\}\) is the input with \(m\) dimension, \(m\) is the batch size, \(\gamma\) and \(\beta\) are the trainable parameters of BN.

Furthermore, we integrated adaptive loss functions (\(L_1\) and \(L_2\) regularization) into the ADLER model. \(L_1\) and \(L_2\) regularizations enhance the generality of ADLER by adding a penalty term to the empirical loss. Because \(L_2\) has a closed form solution, which is a weight squared, it is generally better than \(L_1\) in terms of accuracy and much easier to optimize. On the other hand, \(L_1\) can handle sparse feature spaces, which facilitates feature selection and leads to reduction in data dimensionality (Zou and Hastie 2005). Therefore, the objective function can be defined as:

\[
\text{loss} = \sum_{t=0}^{n} \sum_{i=0}^{3} y_{t,i}^t \ln(y_{t,i}^t) + \gamma_1 ||w||_1 + \gamma_2 ||w||_2.
\]

while \(n\) is the number of samples, \(y_{t,i}^t\) is the output of the \(i\)-th sample at the \(t\)-th neuron of the last layer from the neural network (\(t\) falls into 0 to 3 because there are four consensus molecular subtypes), \(w\) is the weight matrix of last output layer, and \(\gamma_1 ||w||_1 + \gamma_2 ||w||_2\) is the \(L_1\) and \(L_2\) regularization, respectively.

2.3 Nature-inspired deep neural architecture search model (DNAS)

In this section, we proposed a nature-inspired deep neural architecture search model for consensus molecular subtypes from colorectal cancer data, DNAS. DNAS automatically seeks the optimal neural architecture for the ADLER model, and consists of five important components: population initialization, ant colony optimization (ACO) (Dorigo and Gambardella 1997) global search, ACO local search, the dynamic weighting hyperparameter model, and the objective function.

2.3.1 Population initialization

1 **Population**: As mentioned in Section 2.1, the ADLER model has many hyperparameters including the number of epochs \(e\), the optimizer \(\tau\), the initial learning rate for the optimizer \(x\), and the structure of hidden layers \(\{H = \{b_1, b_2, \ldots , b_k\}\}\), for which \(k\) is the number of hidden layers. Specifically, the basic parameters for each hidden layer, \(b_i \in H\) including the size of the latent space \(\{
\theta = \{\theta_1, \theta_2, \ldots , \theta_k\}\\) and the activate function \(\{
\phi = \{\phi_1, \phi_2, \ldots , \phi_k\}\\). However, to stabilize the training process and increase the generalization of the deep learning classifier, dropout layer \(\{\overline{p} = \{p_1, p_2, \ldots , p_k\}\}\), BN layer \(\{\overline{\gamma} = \{\gamma_1, \gamma_2, \ldots , \gamma_k\}\}\), and the structure of hidden layers \(\{L_1 \rightarrow \{y_1, y_2, \ldots , y_k\}\}\), and \(L_2 \rightarrow \{z_1, z_2, \ldots , z_k\}\) regular penalty terms are considered as candidate parameters for \(b_i\). To guarantee each individual consists of all parameters, we designed a hybrid encoding process to represent the hyperparameters as \(p_i = \{e, \tau, x, \phi, \theta, \overline{p}, \overline{\gamma}, \overline{\theta}, \overline{\gamma}\}\).

After that, DNAS creates a directed graph network under the fixed hyperparameter pool. Then, a population with \(n\) individuals \(\mathcal{P} = \{p_1, p_2, \ldots , p_n\}\) is generated to represent the parameters of different ADLER frameworks according to the hybrid encoding rule. For each individual \(p_i \in \mathcal{P}\), ants select the hyperparameters to be visited through a stochastic mechanism. The probability of the individual \(p_i\) can be defined as follows:

\[
p_{ij}^t = \left\{ \begin{array}{ll}
\frac{\theta_{ij}^t \cdot \theta_{ij}^t}{\sum_{q \in \mathcal{P}(p_i)} \theta_{ij}^t \cdot \theta_{ij}^t} & \text{if } c_{ij} \in \mathcal{N}(p_i) \\
0 & \text{otherwise}
\end{array} \right.
\]

where \(\mathcal{N}(p_i)\) is the set of feasible hyperparameters consisting of edges \((i, l)\) representing the relationship between the hyperparameter \(i\) and the hyperparameter \(l\) not yet visited by the individual \(p_i\), \(\overline{x}\) and \(\overline{y}\) control the relative impact between the pheromone and versus the heuristic information \(\eta\).

2 **Encoding**: The encoding process operates on the trainable DNAS whose architectures are generated by the ACO algorithm. To encode the DNAS architecture appropriately for subsequent processing, the non-numeric parameters are considered as a one-hot vector. Based on Section 2.1, the encoding process for each individual \(p \in \mathcal{P}\) is summarized as Algorithm 1.

2.3.2 ACO global search

In our study, only the best ant is allowed to deposit pheromone. The ACO global search is described as follows:

\[
\zeta(r,s) \leftarrow (1 - \phi) \zeta(r,s) + \phi \cdot \Delta \zeta(r,s)
\]

\[
\Delta \zeta(r,s) = \begin{cases}
\eta(r,s) \cdot f(p) & \text{if } (r,s) \in p \\
0 & \text{otherwise}
\end{cases}.
\]

\(0 < \phi \leq 1\) is the pheromone decay parameter, \(p\) is the best individual allowed to deposit pheromone, \(0 < f(p) \leq 1\) is the objective function for \(p\). Equation (7) is executed only after all ants have finished their tours. This global updating rule guarantees that only the edges existing in the globally best path will be strengthened.

2.3.3 ACO local search

The ACO local search is proposed at the end of each construction step. The algorithm will yield different ADLER
frameworks by reducing the concentration of pheromones on
the selected hyperparameters. The ACO local search is
defined as:
\[
\zeta(r, s) \leftarrow \begin{cases} \ (1 - \psi) \ast \zeta(r, s) + \psi \ast \Delta \zeta(r, s) & \text{if } (r, s) \in \mathcal{P} \\ \zeta(r, s) & \text{otherwise} \end{cases}, \tag{8}
\]
where \(0 < \psi \leq 1\) is the pheromone decay coefficient.

2.3.4 Dynamic weighted hyperparameter model

In this section, we describe employing XGBoost to quantify
the impact of each hyperparameter on ADLER to guide ACO
iteration. The dynamic weighted hyperparameter model is
summarized in Algorithm 2.

1) XGBoost: We employ XGBoost as the dynamic weight-
ing hyperparameter model for the following reasons; as
DNAS encodes each \(p_i \in \mathcal{P}\) based on the principle of
one-hot, \(E(\mathcal{P})\) consists of many zeros. XGBoost provides
a boosting algorithm for handling such sparse data
\((E(\mathcal{P}))\) to obtain a more robust performance.
Meanwhile, XGBoost provides a regularization term in
its loss function to avoid overfitting.

2) Dynamic weighting hyperparameter: To maintain the
real-time validity of surrogates, XGBoost is re-trained at
each iteration. Then, DNAS determines the weight of
each pair of hyperparameters for ADLER through com-
prehensive consideration of the feature importance, as
formulated below:
\[
\eta(r, s) = \nu \ast \phi, \tag{9}
\]
where \(\nu\) is the regression performance of XGBoost, \(\phi\) is the
feature importance score computed by trained XGBoost for
each hyperparameter. After that, \(\eta(r, s)\) is adopted to update
the pheromone for the ACO Search stages.

2.3.5 Objective function

Generally, for cancer subtype diagnosis models, accuracy is
widely used to quantify the performance of each individual in
the population, which can be defined as follows:

\[
\text{Accuracy} = \frac{1}{n} \sum_{i=1}^{n} I(y_i = y'_i), \tag{10}
\]
where \(I(x)\) is the indicator function, \(y\) is the truth label and \(y'_i\)
is the corresponding diagnostic labels. Therefore, the objective
function in our study is to maximize Equation (10).

2.3.6 Termination criteria

To comprehensively obtain a promising performance of
DNAS, we develop two termination conditions. Firstly, a sin-
gle ADLER training process will be terminated if the perform-
ance on the validation set does not improve over 50 epochs
or the maximum of epochs. Secondly, the termination condi-
tion is to reach 10 iterations in the evolution process.

2.3.7 Performance evaluation

Three evaluation metrics are used in this study and are de-
fined as follows:

- **Sensitivity** = \(TP / (TP + FN)\), \tag{11}
- **Specificity** = \(TN / (TN + FP)\), \tag{12}
- **Accuracy** = \(1 \ast \sum_{i=1}^{n} I(y_i = y'_i)\), \tag{13}

where \(I(x)\) is the indicator function, \(y\) is the truth label and \(y'_i\)
is the corresponding diagnostic label, and \(n\) is the number of
samples, TP is the true positive, TN the true negative, FP the
false positive, and FN the false negative.

2.3.8 Time complexity analysis

In this work, the time complexity mainly depends on the com-
plexity of ADLER and the evolutionary steps. For ADLER,
the time complexity is \(O(n^2 + O(n \ast m \ast k))\) using the sto-
castic gradient descent optimizer, where \(n\) represents the
number of samples, \(m\) is the feature size, \(k\) is the number of
iterations. For ACO, the time complexity is \(O(N \ast D)\), where
\(N\) is the population size, \(D\) is the dimension of the hyperparam-
eter for a single ADLER. Therefore, the overall time com-
plexity of DNAS is \(O(N \ast (n^2 + n \ast m \ast k))\) in the worst
situation.

2.4 Parameter settings

In DNAS, we chose different hyperparameters from different
pools to assemble a single ADLER architecture. Especially,
the hyperparameters lambda1 and lambda2 are tuned on vali-
dation sets by 10-fold cross-validation, and after they are
tuned, the model was applied on test datasets to generate test
accuracy for comparison. The details are described in the
Supplementary File.

3 Results

3.1 Methodology overview of DNAS

In this section, we propose an automated nature-inspired DNN
architecture search model for cancer subtype identification called
DNAS which is shown in Fig. 1. Considering a gene expression
data matrix, \(X = \{X_1, X_2, \ldots, X_i, \ldots, X_n\}, i = 1, 2, \ldots, n\)
and then consensus molecular subtypes \(y_i \in \mathcal{Y}\), our model is trained
on \(X\) to diagnose \(\mathcal{Y}\) through fully-connected layers and the adap-
tive loss to obtain the feature representation of \(X\) in Phase A.
Then, to alleviate the impact of high-throughput gene expression profiles, discriminative gene expression analysis is adopted to select important genes from colorectal cancer data in phase A, which are then fed into Phase B.

After that, we propose DNAS, a pipeline based on ACO for automatically discovering the best architecture of ADLER to identify consensus molecular subtypes from colorectal cancer gene expression profiles and then apply XGBoost to analyze the feature importance and then assign different weights to each hyperparameter. In Phase C, a population $P = \{p_1, p_2, \ldots, p_n\}$ is proposed to represent the hyperparameters of the ADLER framework including the number of epochs (e), the optimizer (τ), the initial learning rate for the optimizer (α), and the structure of the hidden layers ($H = \{h_1, h_2, \ldots, h_k\}$). Each hidden layer $h_i \in H$ includes the size of the latent space (β) and the activate function (δ). Moreover, to prevent overfitting of the algorithm and thus improve the generalization of deep learning, the dropout layer (γ), Batch Normalization (BN) layer (η), L_1 (ζ_1), and L_2 (ζ_2) regular penalty terms are considered as candidate parameters for h_i.

Figure 1. Overview of the proposed method, DNAS, for diagnosing CMSs in colorectal cancer. (A) The framework of DNAS, to maintain the biological significance, we integrate the T-test and Wilcoxon together to analyze differentially expressed genes (DEGs). (B) The learning model (ADLER) with integrated feature space are employed for cancer subtype identification. (C) The fully automated deep neural network searching framework based on ant colony optimization (ACO) algorithm. It includes population initialization, ACO global search, ACO local search, dynamic weighting hyper-parameter model, and pheromone update. This ACO global search guarantees that only the edges existing in the globally best path will be strengthened. The ACO local search will yield different ADLER frameworks by reducing the concentration of pheromones on the selected hyperparameters. Using dynamic weighted hyper-parameter model to quantify the impact of each hyperparameter on ADLER to guide ACO iteration. The optimal results are obtained by global updating with pheromone and weight, where pheromone compute based on the distance traveled by each ant on the path and fitness.
3.2 DNA is the most accurate among identification methods on colorectal cancer

To demonstrate the performance of DNA, six machine learning methods including Random Forest (RF) (Breiman 2001), XGBoost (Chen and Guestrin 2016), Gradient Boosted Decision Trees (GBDT) (Friedman 2002), Elastic Linear Model (ELM) (Zou and Hastie 2005), Support Vector Machine (SVM) (Hsu and Lin 2002), and CMSClassifier (Guinney et al. 2015) were compared to DNA. In addition, we also compared three deep learning models including DeepForest (Zhou and Feng 2019), DeepCC (Gao et al. 2019), and Inception_Res (Szegedy et al. 2017). Meanwhile, we added a deep learning model with two hidden layers (500, 30) with Tanh activation without the evolutionary optimization, named ADLER1, to demonstrate the effectiveness of our evolutionary framework.

In the first, we compared our proposed model with machine learning models. The experimental results are summarized in Fig. 2; it can be observed that our proposed DNA achieves the best performance. Regarding accuracy, DNA was the only one to achieve 90% on all datasets and its average accuracy was 4%–29% higher than other six methods in Fig. 2A and B. For specificity, DNA also outperformed the other competitive methods. From Fig. 2C, the average specificity values of DNA are 2%–18% higher than other six methods. For the Supplementary Fig. S2, DNA was the only model to achieve 95% on the colorectal cancer datasets. Therefore, DNA provided a more competitive performance than the six machine learning methods on eight colorectal cancer datasets. Further, we compared the performance of our algorithm to four different deep learning models under 10-fold cross-validation. The experimental results are summarized in Fig. 2. We observed that DNA achieves the best performance while Inception_Res yield the worst. For the accuracy, DNA was the only model with above 90% performance on all datasets. In particular, the performance of DNA was superior to ADLER1 on all datasets, indicating that the ACO algorithm can optimize the ADLER architectures on all datasets. For the specificity and sensitivity, DNA also outperformed other competitive deep learning models. In summary, we conclude that DNA provides better performance than four other deep learning models and could unleash its power to deal with the colorectal cancer.

After that, to demonstrate the robustness of DNA, we also applied DNA to annotate cancer subtypes on an independent colorectal cancer dataset from the Cancer Genome Atlas (TCGA) (Guinney et al. 2015). The TCGA expression data can be downloaded from (https://www.synapse.org//#!Synapse:syn2623706/wiki/). The TCGA dataset has 512 patients with explicit CMSs labels and each patient sample has 20293 features. At this point, we randomly left out 10% of the samples to construct a test set. Then, we trained DNA on the remaining 90% samples by 10-fold cross-validation. The results are summarized in Fig. 2D. We observe that only one sample from CMS3 is incorrectly diagnosed as CMS2. The performance of DNA was not degraded by the transformation of the data protocol, demonstrating the robustness of DNA on different cross-platform tasks.

3.3 Evaluation of parameter selection and feature importance analysis

To determine the best number of decision trees in our DNA framework, we tested ten different numbers of decision trees, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, named DT1, DT2, DT3, DT4, DT5, DT6, DT7, DT8, DT9, DT10, respectively. The left figure Supplementary Fig. S3 summarizes the average accuracy of different numbers of decision trees on all 8 colorectal datasets. From the experimental results, we conclude that the average accuracy of DT5 is higher than the other decision tree numbers. Therefore, we chose the number of decision trees to be 1000 in DNA.

To assess the robustness of DNA, we conducted a series of experiments on 8 colorectal cancer datasets under the same termination condition. We reran DNA on the colorectal cancer datasets to measure the performance of different population sizes {5, 10, 15, 20}, namely PA1, PA2, PA3, and PA4, in 100 fitness function evaluations, the experimental results are summarized in the right figure of the Supplementary Fig. S3 where we observe that PA2 provides the best average accuracy.

After that, we investigated the effects of six gene selection methods on the model. To maintain the biological significance, we integrate the T-test and Wilcoxon together to analyze differentially expressed genes (DEGs). Indeed, we combine the subtypes into four groups: CMS1 versus others, CMS2 versus others, CMS3 versus others, and CMS4 versus others. Then, DEGs are identified based on log2 fold-change and Q values under T-test and Wilcoxon, respectively. Specifically, the genes with log2 fold-change > 1 and Q < 0.05 are retained and identified as DEGs. Finally, the screened DEGs are used as input for the ADLER model.

To demonstrate the effectiveness of the differential gene expression analysis model in our study, other five feature selection models including Extra-Trees, chi-squared, F-value, Mutual Information, and ReliefF were employed as comparison. The experimental results are depicted in Fig. 3, which reveal that the differential gene analysis model provides better performance than the other models, enhancing the performance for the whole identification framework. Therefore, we can conclude that differential gene expression analysis is an inevitable step toward a more precise diagnosis of cancer subtypes.

3.4 DNA can detect lung cancer subtypes from different cross-platform data

In 2020, about 2.2 million new lung cancer patients have been diagnosed and there were ~1 800 000 deaths around the world. To elaborate the general applicability of DNA, we investigated the performance of DNA on lung cancer detection. Indeed, we collected two most prevalent subtypes of lung cancer from TCGA including LUAD and LUSC, whose distinction requires visual inspection by an experienced pathologist (Coudray et al. 2018).

We collect a lung cancer dataset with 925 samples and 20486 genes. Firstly, we trained DNA on a training set which is composed of randomly selected 832 samples. Then, the remaining 93 samples were used as the test data. Under the T-SNE methods, LUAD and LUSC of lung cancer after the DEGs scanning algorithm were identified as shown in Fig. 4A. From the results, we can observe that our DEGs model can clearly distinguish different lung cancers. In the Supplementary Fig. S4 represents the area under the receiver operating characteristics (AUROC) of DNA on the test set. DNA provided 98% area under the curve...
(AUC) on both LUAD and LUSC, which represents our model can learn the potential feature from lung cancer data. Then, we investigated the top 10 genes marked by Wilcoxon rank-sum test further. Figure 4B–E summarized the maker gene analysis on the DNAS-identified lung cancer subtypes, respectively. In particularly, LOC100130933 and DDAH1 were exhibited relatively high expression in LUAD (Joehanes et al. 2016, Huang et al. 2020), while DSG3 and TPRXL were expressed at high levels in LUSC (Savci-Heijink et al. 2009, Sui et al. 2017). Therefore, LOC100130933 and DDAH1 may stimulate the growth of adenocarcinoma in lung cancer, and DSG3 and TPRXL can contribute to mark squamous cell carcinoma in lung cancer.
3.5 DNAS to improve end-to-end breast cancer screening

In this study, we employ DANS to diagnose breast cancer to further elaborate the general applicability of our method. We adopted the PAM50 subtypes as the class labels, which have five intrinsic molecular subtypes including Basal-like, Her2⁺, Luminal A, Luminal B, and Normal-like.

The breast cancer dataset with six molecular subtypes includes 144 normal breast tissue samples and 1989 primary breast tumor samples from METABRIC project (Curtis et al. 2012). We randomly partitioned the data into training and test sets in 9:1. After the discriminative gene expression analysis, only 932 genes were scanned as inputs into DNAS. The results of the test set are summarized in Fig. 5A and Supplementary Fig. S5. As expected, DNAS achieved accuracy higher than 80% on the test set. For the AUROC shown in Fig. 5A, DNAS achieved 90% AUC for the six breast cancer subtypes. In particularly, DNAS identified 17 outs of 18 normal sample from tumor samples, which achieves 0.97 AUC. To directly assess the separation between the normal samples and tumors, we have used the Wilcoxon rank-sum test for visualizing the expression of top two marker genes, which are summarized in Fig. 5C. The normal samples expressed relatively high levels of FOSB and ANXA1 (Milde-Langosch 2005, Moraes et al. 2018), implying that the expression of these two genes decreases after the occurrence of breast cancer. Therefore, FOSB and ANXA1 can be considered as the important marker to distinguish normal sample...
from breast cancer. After that, the distribution of top 100 marker gene were visualized in Fig. 5B, and the expression of top five marker genes were depicted in Fig. 5E. Meanwhile, we have targeted the dysregulated pathways in each breast cancer subtype by gene set enrichment analysis (GESA), summarized in Fig. 5F and Supplementary Fig. S7. The most statistically significant pathways identified by each subtype showed that Basal was characterized by MicroRNAs in cancer (Milioli et al. 2017); HER2+ was characterized by the phospholipase D signaling pathway (Cho and Han 2017); Luminal A was characterized by HTLV-I infection (Hirata et al. 2019); Luminal B by transcriptional dysregulation in cancer (Betts et al. 2013); Normal-like was characterized by the phospholipase D signaling pathway (Cho and Han 2017); and normal was characterized by focal adhesions (Luo and Guan 2010), which has been demonstrated that those five significant pathways are extremely important in the initiation, progression and metastasis of breast cancer (Rodrigues et al. 2007, Feng et al. 2018).

3.6 External cohort studies

To further evaluate performance of DNAS in a fair manner, we also conducted two experiments on an external cohort analysis by completely excluding GSE14333 (135 out of 1354 samples, ~10%) named EC1, and GSE2109 (266 out of 1354 samples, ~20%) named EC2. Meanwhile, the technical batch effect of all the datasets were corrected as the way in Guinney’s work (Guinney et al. 2015), the results were shown in Supplementary Fig. S9. Additionally, we also compared our proposed model to eight other competitive models, including SVM, XGBoost, RF, ELM, GDBT, DeepForest, DeepCC, Inception_Res, as visualized in Supplementary Fig. S6A. We observe that DNAS produced the best performance in terms of accuracy, specificity, and sensitivity. On EC1, as shown in the left of the Supplementary Fig. S6A, the accuracy of DNAS outperformed other methods by 1.5%–10%. On EC2, as shown in the right of the Supplementary Fig. S6A, DNAS was the only method that gave 90% accuracy. We further conducted the
comparison experiments on other datasets following the same strategy used above, i.e. training the model on a comprehensive cohort except for one of the colorectal cancer datasets, and test the model on that remaining dataset. Obviously, DNAS still maintained favorable robustness and achieved the best performance as shown in Supplementary Fig. S8. Therefore, we can conclude that our proposed DNAS is more robust than other eight methods and may provide a reference for the deployment of automatic and robust models for the diagnosis of colorectal cancer subtypes.

3.7 Genomic interpretability

In the previous section, we conduct several experiments that demonstrate the promising performance of DNAS. Next, we investigated the biological significance of DNAS for the external cohort in our study. Firstly, we identified the top 200 genes with the largest weight variances in the first representation layer. In principle, these genes are a “sufficient and necessary” set to represent the model’s inputs (Tran et al. 2021). Then, multiple enrichment analyses were conducted to elucidate the biological functions. The details were given in Supplementary file.

4 Conclusion

Given the central importance of cancer, consensus molecular subtype identification is desirable for patient stratification. Specifically, the most important component of consensus molecular subtyping is the ability of the underlying classifier to correctly diagnose each subtype. In this study, we proposed...
an automated DNN architecture search framework based on differential gene expression analysis to find consensus molecular subtypes in colorectal cancer data.

Based on our results, we observed that DNAS achieved better colorectal cancer subtype identification than eight competitive models. We also demonstrated the significance of differential gene expression analysis compared to other feature selection algorithms, as highlighted in Fig. 3, where it is obvious that differential gene expression analysis is necessary and important for cancer subtype diagnosis. In essence, DNAS brings the following advantages: (i) molecular interpretability as DNAS considers all DEGs as inputs, which is necessary to expose the integrity of the pathology. (ii) In dealing with cross-platform cancer gene expression data. (iii) Generalization ability as DNAS achieves high performance on other types of cancer.

In future work, we believe that our automated deep learning search framework approach can demonstrate its superior performance and applicability in genomics across different contexts of high-throughput molecular data.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest
None declared.

Funding
The work was substantially supported by the National Science Foundation of China [62076109 and 32000464], the Natural Science Foundation of Jilin Province [2019010306] and 202002112158], the Health and Medical Research Fund, the Food and Health Bureau, the Government of the Hong Kong Special Administrative Region [70181426], and the funding from Hong Kong Institute for Data Science (HKIDS) at City University of Hong Kong and two grants from City University of Hong Kong [CityU 11202219 and 11203520].

References

