Low prevalence of Babesia hongkongensis infection in community and privately-owned cats in Hong Kong

Published in:
Ticks and Tick-borne Diseases

Published: 01/01/2024

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.ttbdis.2023.102278

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 09/03/2024
Low prevalence of *Babesia hongkongensis* infection in community and privately-owned cats in Hong Kong

A. Almendrosa,*,a, Y.R. Choia,d, T.L. Leunga, W.Y.J. Tama, D. Hernandez Muguirob, F.M. Woodhousec, J.J. Grayc, J.A. Beattya,d, V.R. Barrsa,d

a Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China

b Veterinary Diagnostic Laboratory, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China

c The Society for the Prevention of Cruelty to Animals, Wan Chai, Hong Kong Special Administrative Region of China

d Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China

* Corresponding author.

E-mail address: aalmendr@cityu.edu.hk (A. Almendros).

1. Introduction

Babesia are vector-borne apicomplexan intraerythrocytic parasites that infect a wide range of animals including mammals, birds and reptiles. Natural transmission mainly occurs via ticks from the *Ixodidae* family (Solano-Gallego and Baneth, 2011). In dogs, horizontal transmission via bites, blood transfusion or transplacental transmission, has also been reported (Birkenheuer et al., 2005; Fukumoto et al., 2005; Matsu et al., 2004; Stegeman et al., 2003). Most infections in dogs are subclinical and are diagnosed incidentally (Almendros et al., 2020). In dogs with clinical babesiosis, the major clinicopathological abnormalities are anaemia and thrombocytopenia (Birkenheuer et al., 1999; Conrad et al., 1991; Muguiro et al., 2023).

Babesiosis in cats is uncommon and is of major concern in only a few regions including South Africa, where four species of *Babesia* in three well defined clades, are responsible for most clinical presentations, including *B. felis* s.s. (clade I), *Babesia leo* (clade I), *Babesia lengau* (clade II), and *Babesia* species cat Western Cape (clade VI) (Penzhorn and Oosthuizen, 2020; Penzhorn et al., 2004). Clade VI includes *B. canis* sp., *B. gibsoni*, and *B. vogeli*, as well as *B. lohac*, *B. microti*, and *B. vulpes* have also been detected in cats (Almendros et al., 2023; Colella et al., 2020; Kelly et al., 2017; Penzhorn and Oosthuizen, 2020; Wong et al., 2012; Yin et al., 2022).

Pet ownership is reported in 9.4 % of households of Hong Kong, with cats comprising 42.6 % of owned pets (HKSAR, 2019). *Babesia* infection of dogs in Hong Kong has a higher prevalence in the stray population compared to owned dogs (Muguiro et al., 2023; Wong et al., 2011). To the best of our knowledge, molecular evidence that *Babesia* species are circulating in the cat population in Hong Kong has been reported in only two cases to date (Almendros et al., 2023; Wong et al., 2012). The objectives of this study were to determine the prevalence and species of *Babesia* detected in healthy community-owned cats and in...
privately-owned cats with and without anaemia in Hong Kong.

2. Materials and Methods

2.1. Group selection and distribution

Ethical approval for this study was granted by the Animal Ethics Committee of City University of Hong Kong (approvals A-0478 and ANST-150 00000015). Two groups of cats were investigated in this study. All data collected was treated confidentially and was deidentified.

2.1.1. Privately-owned cats

Since babesiosis in dogs is often associated with anaemia, samples were collected from anaemic and non-anaemic cats to determine if anaemia was a risk factor for Babesia infection. Residual diagnostic EDTA blood samples and blood smears were collected from anaemic and non-anaemic cats presented to CityU Veterinary Medical Centre (VMC) between July 2022 to March 2023. Anaemia was defined as a haematocrit (HCT) ≤ 25 % (Tasker, 2012). This mixed population of cats included healthy cats presented for routine healthcare (e.g. desexing) and sick cats undergoing diagnostic investigations.

Age, sex, and neuter status were recorded. Cats were categorised into two age groups (< 3 and ≥ 3 years). Haematocrit and platelet count (PLT) were recorded for all cats. Where available, absolute reticulocyte count was also recorded.

2.1.2. Community cats

Community cats are free-roaming cats living in colonies that are cared for by members of the public. Whole blood samples were collected, with consent, from community cats presented to a trap-neuter-release program at the Society for the Prevention of Cruelty to Animals (SPCA), Hong Kong between January and May 2021. Whole blood was collected, with consent, from community cats presented to CityU Veterinary Medical Centre (VMC) between July 2022 to March 2023. Anaemia was defined as a haematocrit (HCT) ≤ 25 % (Tasker, 2012). This mixed population of cats included healthy cats presented for routine healthcare (e.g. desexing) and sick cats undergoing diagnostic investigations.

Age, breed, sex, and neuter status were recorded. Cats were categorised into two age groups (< 3 and ≥ 3 years). Haematocrit and platelet count (PLT) were recorded for all cats. Where available, absolute reticulocyte count was also recorded.

2.2. DNA extraction

DNA was extracted from 100 µL of EDTA blood or blood clot using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. DNA was eluted in 50 µL and stored at -80°C until analysis. Conventional PCR of feline glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was performed to confirm the integrity of extracted DNA (McLuckie et al., 2018).

2.3. PCR assays

Babesia spp. detection was performed using two PCRs as previously described, one targeting the mitochondrial cytochrome b gene (cytb) and the other targeting 18S rRNA (Wong et al., 2012). PCR primers and cycling conditions are presented in Table 1. Each reaction contained 1 µL of template DNA, DreamTaq™ Hot Start Green DNA Polymerase (Thermo Fisher Scientific, Graciuno, Vilnius, Lithuania), and dNTP (Thermo Fisher Scientific, Graciuno, Vilnius, Lithuania) at a final concentration of 200 µM and a final primer concentration of 0.5 µM. For all PCRs, a positive control (synthetic DNA construct, Thermo Fisher Scientific, Graciuno, Vilnius, Lithuania) and negative control (molecular grade water) were included. For samples that were Babesia positive, an additional pan-Babesia nested PCR was performed to obtain a longer 18S rRNA sequence (Li et al., 2015).

Bands of the expected target size obtained on gel-electrophoresis after PCR were sequenced by Sanger sequencing (BGI Genomics, Hong Kong). Geneious software (version 2023.1.1) was used to assemble the consensus sequence. The nucleotide homology and coverage of sequences generated were compared by Basic Local Alignment Search Tool (BLAST) against sequences in the NCBI database in GenBank.

2.4. Microscopic examination

Blood smears from samples testing Babesia positive on PCR from privately-owned cats were fixed with methanol and stained with modified Giemsa prior to examination under a light microscope to identify piroplasms or intraerythrocytic inclusions. Blood smears were not available from community cats.

2.5. Data analysis

The proportion of the total number of cats testing positive for Babesia spp. (frequency) was calculated. Descriptive analyses of age, breed, sex, neuter status and haematological values (range and mean) were performed. Associations between FIV and FELV status and a positive result were tested by Fisher’s exact test.

3. Results

The sample population comprised 364 cats, of which 125 were privately-owned and 239 were community cats.

3.1. Privately-owned cats

Amongst the 125 privately-owned cats, age ranged from 9 weeks to 19.5 years (mean 7.8 years, median 8 years). Sex, neuter status, breed and numbers of cats with and without anaemia are listed in Table 2. The platelet count ranged from 0 to 1304 × 10^9/L (mean 252 × 10^9/L, median 237 × 10^9/L) and was confirmed by blood smear examination in 33 cats. A total of 29/125 (23 %) cats had a platelet count below the

Table 1

<table>
<thead>
<tr>
<th>Primer target</th>
<th>Primer name</th>
<th>Sequence</th>
<th>Amplicon size (nucleotides)</th>
<th>Cycling conditions (40 cycles)</th>
<th>D</th>
<th>A</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>cytb gene of Babesia</td>
<td>P_cytf</td>
<td>TGGTGCTCCCCAATAACTCATTT</td>
<td>360</td>
<td>95°C, 30s</td>
<td>51°C, 30s</td>
<td>72°C, 1 min</td>
<td></td>
</tr>
<tr>
<td>Babesia</td>
<td>P_cybr</td>
<td>AGGAATTTAATCTTAAATGGAATT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18S rRNA of B. hong Kong</td>
<td>BH_18S56FS</td>
<td>CGTTGGGCGTTTACCTTTTT</td>
<td>173</td>
<td>95°C, 30s</td>
<td>55°C, 30s</td>
<td>72°C, 1 min</td>
<td></td>
</tr>
<tr>
<td>Babesia</td>
<td>BH_18S737R</td>
<td>TAAAGACTATTACAAGGTTGCAA</td>
<td>173</td>
<td>95°C, 30s</td>
<td>55°C, 30s</td>
<td>72°C, 1 min</td>
<td></td>
</tr>
<tr>
<td>18S rRNA (pan-Babesia)</td>
<td>Outer F (1st round)</td>
<td>CATACGGCTGAGGGTAGTGAGTTAT</td>
<td>489 – 518</td>
<td>95°C, 30s</td>
<td>57°C, 30s</td>
<td>72°C, 1 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outer R (2nd round)</td>
<td>GAGGCAGACACGGGTTAAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inner F (2nd round)</td>
<td>CCAACAAAATAGAACCGTTCTCTTAAC</td>
<td>421 – 447</td>
<td>95°C, 30s</td>
<td>56°C, 30s</td>
<td>72°C, 1 min</td>
<td></td>
</tr>
</tbody>
</table>

D - denaturation; A - annealing; E - extension temperatures.
Percentage of nucleotide identity and coverage using the highest-match on the NCBI GenBank database in positive Babesia PCR samples identified in 5 cats in Hong Kong.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Cytochrome B results BLAST result top match (accession number)</th>
<th>% identity</th>
<th>% coverage</th>
<th>Accession number of sample sequence</th>
<th>18 s rRNA results BLAST result top match (accession number)</th>
<th>% identity</th>
<th>% coverage</th>
<th>Accession number of sample sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH1</td>
<td>Babesia hongkongensis (JQ987357.1)</td>
<td>99.72</td>
<td>100.00</td>
<td>OR230433</td>
<td>Babesia hongkongensis clone 66A (MH143396.1)</td>
<td>100.00</td>
<td>100.00</td>
<td>OR226548</td>
</tr>
<tr>
<td>BH2</td>
<td>Babesia hongkongensis (JQ987357.1)</td>
<td>100.00</td>
<td>100.00</td>
<td>OR230434</td>
<td>NIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH3</td>
<td>Babesia hongkongensis (JQ987357.1)</td>
<td>99.72</td>
<td>100.00</td>
<td>OR230435</td>
<td>Babesia hongkongensis clone 53A (MH143396.1)</td>
<td>100.00</td>
<td>99.00</td>
<td>OR226567</td>
</tr>
<tr>
<td>BH4</td>
<td>Babesia hongkongensis (JQ987357.1)</td>
<td>100.00</td>
<td>100.00</td>
<td>OR230436</td>
<td>Babesia hongkongensis clone 53A (MH143396.1)</td>
<td>99.76</td>
<td>100.00</td>
<td>OR226558</td>
</tr>
<tr>
<td>BG1</td>
<td>Babesia gibsoni isolate WHS8 (KP666169.1)</td>
<td>99.44</td>
<td>98.00</td>
<td>OR020936</td>
<td>Babesia gibsoni Wayanan isolate 8 (MN134517.1)</td>
<td>100.00</td>
<td>99.00</td>
<td>QQ081666</td>
</tr>
</tbody>
</table>
In Hong Kong, ixodid ticks from four genera have been reported - *Rhipicephalus*, *Haemaphysalis*, *Ixodes* and *Hyalomma* (Chan et al., 2011). However, surveillance to determine the relative prevalence of tick species parasitizing dogs in Hong Kong is lacking. *Rhipicephalus sanguineus* and *Haemaphysalis longicornis* are the most common tick species identified on dogs in East and Southeast Asia (Cheng et al., 2018; Colella et al., 2020; Nguyen et al., 2020; Wang et al., 2020; Zhang et al., 2017). Whether these or other tick species could be the vector for *B. hongkongensis* remains to be determined.

Infections with ticks were not identified on any of the cats in our study. In contrast to dogs, ticks are infrequently found on cats due to their fastidious self-grooming behaviours. In dogs, *B. gibsoni* is also transmitted horizontally through fights and bites, blood transusions or by transplacental infection (Birkenheuer et al., 2005; Fukumoto et al., 2005; Matsuu et al., 2004; Stegeman et al., 2003). Horizontal transmission for *B. hongkongensis* amongst community cats may be possible too.

The infection rate of *Babesia* in cats in our study was low (1.4 %) compared to what has been reported in other regions like the Western Cape, Eastern Cape and KwaZulu-Natal provinces of South Africa, where feline babesiosis is a major concern with high infection rates (>50%) (Bosman et al., 2007; Jacobseun et al., 2000). Other regions that have reported high infection rates include St Kitts (31.0 %), Iraq (26.0 %) and Portugal (9.4 %) (Kelly et al., 2017; Maia et al., 2014; Suliman, 2009). The higher infection rates in these regions might be due to differences in exposure to and prevalence of tick vectors and the *Babesia* species they carry as well as the differences in frequency of tick prophylactic control.

The *Babesia* infection rate in cats in geographic locations closer to Hong Kong, such as mainland China and Thailand, are reported in several studies to be similarly low (Simking et al., 2010; Yin et al., 2022; Zhang et al., 2019). In mainland China, *B. gibsoni* was detected in 2.8 % of feline blood samples from four different provinces (Yin et al., 2022; Zhang et al., 2019). A previous study investigating the association between age and *Babesia* detection reported that cats less than 3 years old were more susceptible to infection (Schoeman et al., 2001). The low number of *Babesia* positive samples in our study precluded the investigation of any age association.

There were several limitations in our study including that the healthy status designation of community cats was based on clinical examination only as clinicopathological tests other than for FIV and FeLV were not performed. Also, since low volumes of residual blood were used for testing of privately-owned cats, FIV and FeLV testing could not be performed. Since *B. hongkongensis* was only detected in community cats in our study, whether it could be a risk factor for anaemia and/or thrombocytopenia in cats could not be determined and further investigations are warranted.

Babesia gibsoni has been reported previously to cause subclinical infections in 5/119 (4 %) healthy cats in St Kitts in the Caribbean, 12/429 (3 %) cats in China and in one cat in Singapore (Colella et al., 2020; Kelly et al., 2017; Yin et al., 2022). Clinical signs were identified retrospectively in the single *B. gibsoni* positive privately-owned cat in our study, including lethargy, pallor, hyporexia, fever and weakness with associated anaemia and thrombocytopenia (Almendros et al., 2023). Further surveillance is required to determine whether *B. gibsoni* has a pathogenic role in cats.

5. Conclusion

This study confirms the molecular presence of *B. gibsoni* and *B. hongkongensis* in cats in Hong Kong, with a low infection rate overall (1.4 %) in the studied population. The higher proportion of *Babesia*-positive community cats compared to privately-owned cats could be due to a higher risk of vector exposure or horizontal transmission during fighting, amongst community cats. Identified *B. hongkongensis* infections were subclinical. Further research on the virulence of *B. gibsoni* and *B. hongkongensis* infection in cats, as well as their potential routes of transmission and determination of the potentially involved arthropod vector(s) is warranted.

Funding

This research did not receive external funding. The study was funded with a grant from City University of Hong Kong to AA (Project No. 9610596).

Author statement

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

CRediT authorship contribution statement

Declaration of Competing Interest

The authors declare not conflict of interest.

Data availability

Data will be made available on request.

Acknowledgments

We thank City University Veterinary Diagnostic Laboratory (VDL), City University Medical Centre (VMC), the Society for the Prevention of Cruelty to Animals (SPCA) Hong Kong and all the practitioners and technicians that work in these centres and helped with the sampling and data collection.

References
