Investigating the impact of scenario and interaction fidelity on training experience when designing immersive virtual reality-based construction safety training

Luo, Yanfang; Ahn, Seungjun; Abbas, Ali; Seo, JoonOh; Cha, Seung Hyun; Kim, Jung In

Published in:
Developments in the Built Environment

Published: 01/12/2023

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY-NC-ND

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.dibe.2023.100223

Publication details:

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 05/12/2023
Investigating the impact of scenario and interaction fidelity on training experience when designing immersive virtual reality-based construction safety training

Yanfang Luo, Seungjun Ahn, Ali Abbas, JoonOh Seo, Seung Hyun Cha, Jung In Kim

1. Introduction

Despite respect efforts to improve safety, construction sites are still among the most dangerous workplaces (Mahmoudi et al., 2014; Choi et al., 2019). Among various measures employed to improve safety, worker training has found to be one of the most effective methods (Burke et al., 2006; Ricci et al., 2016). Recently, the construction industry, as with other high-risk sectors, has shown great interest in adopting virtual reality (VR) technologies for worker safety training. In VR, workers can gain knowledge about safety and learn pro-safety behavior through the virtual experience of dangerous situations without any real risks being posed by the training process (Ragan et al., 2015; Gao et al., 2019; Luo et al., 2021). Furthermore, as immersive virtual reality (IVR) devices such as a head-mounted display (HMD) have become more and more affordable, the construction industry has explored the possibility of expanding the use of IVR safety training programs in the form of IVR rooms or even home training set-ups (Buttussi and Chittaro, 2017; Gao et al., 2019). When compared to traditional methods, IVR safety training has distinctive advantages in improving safety motivation and learning effectiveness (Vergara et al., 2017; Çakiroğlu and Gökoglu, 2019; Meyer et al., 2019; J. W. Choi et al., 2020; Morelot et al., 2021).

When designing simulation-based training such as IVR training, simulator fidelity is one of the most critical design features, as it not only affects learning outcomes but is also associated with the cost effectiveness of the systems (Dahllöf et al., 2017; Hamstra et al., 2014; Lefor et al., 2020). While the definition of fidelity could vary depending on the application, one of the traditional definitions is the extent to which the simulator replicates the actual environment (Alessi, 1988). For the higher transferability of training from a simulated environment to complicated real-world situations, high-fidelity simulators featuring realistic 3D views and interfaces have been preferred (Hays and Singer...
2. Literature review

2.1. VR-based safety training

Virtual reality is one of the emerging computer-aided technologies that can be applied in safety training. It uses several types of apparatus, such as 2D displays, the Cave Automatic Virtual Environment (CAVE), and head-mounted displays (HMDs) (Gao et al., 2019; Hasanzadeh et al., 2020). These devices provide different levels of immersion in the virtual environment, which are non-immersive, semi-immersive, and fully immersive. Non-immersive VR, such as desktop VR and mobile VR, was the most common type for VR safety training due to its ease of use. Chittaro et al. (2018) demonstrated that mobile VR training programs could be more engaging, intuitive, and effective compared with traditional training methods. Recent advances in IVR technologies such as CAVE and HMDs have enabled the creation of more immersive training environments that may enhance learning outcomes in safety training. Previous research efforts have found that CAVE-based learning (i.e., semi-immersive IVR) is effective in learning spatial comprehension, risk perception, and decision making, while traditional classrooms can be a better environment for learning simple and general site safety knowledge (Sacks et al., 2013; Leder et al., 2019). Recently, the use of HMD-based fully immersive VR has been increasing in safety training over the past decade; as such, researchers have demonstrated its efficacy in improving learning motivation and performance and reducing learning duration (Chittaro and Buttussi 2015; Feng et al., 2020; Wu et al., 2020). In addition, HMDs provide a more intuitive way to interact with the VR environment and tasks, and they offer users an experience with a greater sense of presence and engagement (Buttussi and Chittaro, 2017; Zhang 2017; Tai et al., 2022). These features of HMDs provide comparative advantages, especially for safety training, by enabling trainees to experience real-like safety-related scenarios in a risk-free virtual environment (Morelot et al., 2021). In this regard, VR safety training has been applied in multiple areas, including aviation (Chittaro and Buttussi 2015), firefighting (Cha et al., 2012), earthquake emergency training (Feng et al., 2020), and construction safety training (Sacks et al., 2013).

2.2. Importance of fidelity in IVR systems

One of the most distinguishing components between traditional and VR training is immersion, which can be defined as the objective level of fidelity a VR system provides (Bowman and McMahan 2007). Even though fidelity is one of the most critical design features in VR training systems, understanding its role in training performance is challenging due to its multifactorial nature (Hamstra et al., 2014). A number of researchers tended to study the fidelity of VR systems by focusing on specific aspects rather than comprehensively investigating different components of VR systems (Kopp and Hanson 2012; Dahlstrom et al., 2017; Lefor et al., 2020). A framework proposed by Ragan et al. (2015) would provide a theoretical foundation for investigating various aspects of VR system fidelity by classifying it into three categories: display fidelity, interaction fidelity, and scenario fidelity. Display fidelity refers to the verisimilitude of output devices and the reproducibility of sensory stimuli. Interactive fidelity refers to the realism of input devices and the simulated interaction between the real world and the virtual environment. Scenario fidelity refers to the similarity of the simulated scene to the real environment and the reproduction of behaviors, rules, and object attributes during the simulation.

Researchers have tended to assume that a high level of fidelity for all three components necessarily leads to training effectiveness in the virtual environment (Ragan et al., 2015). However, more investigation is required to ascertain the truth of this assumption. Several studies have investigated these three aspects of IVR system characteristics, but only individually. For example, Zhang (2017) have found that an HMD-based system (which has high display fidelity) has a higher degree of intuitive and interactive usage than desktop VR, while McGleen et al. (2013) have established that the user’s sense of presence is enhanced by adding a controller (with high interaction fidelity) to an IVR system to create more natural control and easier operation. Nonetheless, other researchers suggest that training would be more effective when more authentic scenarios (high scenario fidelity) are provided rather than poor-quality simulations (Hayes and Singer 2012).

Thus far, there has been little comprehensive classification and research on the IVR system’s characteristics, and the interaction
between these three aspects is rarely mentioned. The lack of such research into the impact of various types of fidelity in combination with training experience is problematic. The user experience on VR systems is not solely based on how realistic the views are. The display fidelity depends heavily on the specifications of the output hardware (HMD), such as resolution, field of view, and update rate, etc., which depend on the degree of development of the technology. However, interaction fidelity and scenario fidelity are much more optional. To some extent, interaction fidelity and scenario fidelity are more affected by IVR system design decisions (Ragan et al., 2015). For example, interactive fidelity can choose various interactive devices, such as keyboards, handles, joysticks, etc., while scenario fidelity can choose to build simple or complicated scenes. Therefore, it is necessary to understand the impact of interaction and scenario fidelity on user experience from the perspective of system design perspective for a more effective IVR system. In this regard, this research focuses on investigating interaction fidelity and scenario fidelity, as well as the interaction between the two.

The interaction fidelity corresponds to the realism of input devices and the simulation of the interaction between the real world and the virtual environment (Ragan et al., 2015). Several types of input devices are used to control VR objects. Examples include keyboards, joysticks, controllers, driving systems, tracking systems, and omnidirectional treadmills (Canessa et al., 2019; Hooks et al., 2020; Ebnali et al., 2021). Regarding immersive virtual reality systems with HMDs, the impact of interaction fidelity on training outcomes has not reached consensus. Buttussi and Chittaro (2017) found that there was no difference between HMDs with an interactive device using a 3-DOF tracker and those with a 6-DOF tracker in terms of their effect on VR-based knowledge acquisition tasks. The results of a study by Diez et al. (2017) also show that different IVR interaction devices used in a fire warden virtual training system, such as a keyboard or a gamepad, were simply a matter of personal preference and were not clearly linked with training effectiveness. Conversely, Yasui et al. (2019) conducted an experiment combining HMD with haptic feedback devices, such as a Leap Motion Controller and gloves, to train young engineers for correct operations in nuclear power plants and observed differences in training effectiveness between different set-ups of control devices.

Scenario fidelity is closely related to the realism of the simulated virtual environment. It therefore corresponds to the level of development of the scene and features such as behavior, rules, and objective properties that are interpreted as content in a virtual reality environment (Ragan et al., 2015). Researchers propose that realistic environment modeling has a significant impact on the sense of presence in VR (Bracken 2005; Bracken and Skalski 2009). However, Ragan et al. (2015) argue that a high level of complexity in a virtual environment, notably visual complexity, can have a negative impact on target detection performance in an IVR. This is because complexity can distract the user and cause cognitive overload, reducing their attention to the task they are performing (Molhemi et al., 2021). Previous research has also demonstrated that it is not always required or beneficial to achieve a high level of scenario fidelity (Schneider, 1985; Rolfe and Staples, 1988). Some researchers suggest that it is more important to optimize the virtual environment for a specific training task (Druckman and Bjork, 1994).

2.3. Factors affecting user training experience in VR

2.3.1. The sense of presence

Presence is conceptualized as the mental process of attention and mental models of the virtual environment (Schuemie et al., 2001). Investigating the scientific nature of presence lies in understanding the extent and mechanism of its occurrence, and such scientific knowledge can be used to build more effective and efficient IVR systems (Usch et al., 2000). Slater and Wilbur (1997) have described presence as the feeling of “being there,” while Witmer and Singer (1998, p. 225) describe it as “the subjective experience of being in one place or environment, even when one is physically situated in another.” Presence is one of the substantive factors affecting performance in a virtual environment (Hendrix and Barfield, 1996; Lee, 2004; Ahn et al., 2022). One of the most critical aspects of presence is that the users can virtually experience the same reactions and emotions that are very similar to their real ones, playing an important role in enhancing training performance (Schuemie et al., 2001).

Previous researchers have investigated the user experience and training effectiveness of IVR systems in light of presence (Abbas et al., 2023). Song et al. (2021) demonstrated that the VR crane training system significantly improved self-efficacy, which is one of the important aspects of knowledge gain and performance, by mediating the sense of presence and usability. According to a systematic review and meta-analysis a sense of presence (immersion) created by VR training was one of the most testified to be one of significant moderators of cognitive training in people with dementia and mild cognitive impairment (Xie et al., 2022). However, researchers showed that nursing undergraduate students with a low-moderate level of immersion in a computer/mobile VR training program were also effective in gaining procedural knowledge compared to traditional text or video training (Woon et al., 2021). Rogers et al. (2019) found that moderate interaction fidelity was enough for whole-body movements in a VR game using presence and self-efficacy questionnaires. Aekberg et al. (2019) found that low-fidelity simulation training with physical endovascular tool navigation increased motivation in novice trainees compared to conventional video podcast learning through a self-assessment questionnaire. This raised the attention to which degree of the sense of presence would achieve the balance of the training outcome and cost (Cummings and Ballenson 2016).

In addition, presence is a conscious experience with a highly selective and internalized interpretation of the environment (Schubert et al., 2001), and it has been pointed out that the sense of presence may be a manifold experience (Sheridan, 1992; Biocca and Delaney, 1995; Schubert et al., 2001). According to some researchers, the construct of presence includes at least two major components: the sense of location in the VR environment, and the sense of assisting attention concentration or distraction in VR (Schubert et al., 2001). Based on the validated presence measurement theories of Schubert et al. (2001) and Witmer and Singer (1998), this paper describes the subcategories of the sense of presence in the following aspects: general presence (GENP), spatial presence (SPAP), sensory stimuli (SENS), involvement (INV), realism (REAL), distraction (DISTRC), an uncomfortable feeling (UNF). These aspects are consistent with the categories of spatial construction and attention allocation (Witmer and Singer, 1998; Schubert et al., 2001). While previous work has revealed various factors that constitute “presence”, there has not been enough further research into the user experience within these subcategories (Buttussi and Chittaro 2017; Grassini et al., 2020; Hasanzadeh et al., 2020). Schwind et al. (2019) conducted an internal investigation of the sense of presence and found that general presence and involvement were affected by visual realism while spatial presence did not have the same effect. This may help to understand what elements of the VR environment would contribute to task performance for different tasks. Therefore, more research is warranted to further clarify the influence of each of these factors on the user experience in the context of VR training.

2.3.2. Usability

Considering the complexity of VR technology and its applications, evaluating the usability of a system is one of the most challenging aspects of creating a successful virtual experience (Martens 2017). “Usability” here covers a wide range of meanings, including qualitative characteristics such as user satisfaction and user comfort, as well as quantifiable characteristics such as user task completion time and task performance accuracy (Bowman et al., 2002; Martens 2017). It can be summarized as the “ease of use” or “usefulness” of the interactive system. By focusing on usability during the development of a VR system
developers are more likely to create a virtual environment that meets the user’s training needs, thereby enhancing their learning experience (Jankowski and Grabowski 2015; Martens 2017). Experiments have shown that presence has a notable influence on the usability and, hence, the efficacy of a system. Chalil Madathil and Greenstein (2017) adopted the metrics of both presence and time for the completion of tasks in an experimental study to compare the efficacy of three types of collaborative systems: traditional labs, VR set-ups, and Webex (a web-based screen sharing). They found that there was little difference between completion times but that the VR collaborative systems helped participants experience greater involvement than the other two systems (Chalil Madathil and Greenstein 2017). Brade et al. (2017) mentioned that virtual environments can substitute real environments when achieving a high sense of presence in user experience research, while all presence factors would be significantly related to usability in the CAVE. Another researcher (Jankowski and Grabowski 2015) used both spatial presence and the mean time duration of tasks to investigate three types of interface (a VR interface, a stereoscopic display, and a monoscopic display) for mobile robot teleoperation. The results showed that while completion times differed significantly between the three interfaces, the VR interface showed greater subject participation and interaction awareness. Although these studies explored different types of interfaces or operational systems, they did not dive into the effect of innate components of VR systems, for such example scenario fidelity or interaction fidelity, on efficacy the user training experience.

3. Research methods

This study aims to investigate how the different levels of scenario and their interaction fidelity would affect user experience such as sense of presence and usability that are the indicators of training effectiveness through an experimental study. The training task is to deliver safety knowledge during diverse forklift operations at construction sites. According to Al-Jundi and Tanbour (2022), low and high scenario fidelity correspond to “3D models with simple geometry (wireframes)” and “3D models with rendering and animation that are highly realistic to the real world,” respectively. This is consistent with the Level of Development (LOD) used to describe the precision of a building information model. Therefore, we used “VR models with high LOD” and “VR models with low LOD” as the representation of high and low scenario fidelity. VR models with high LOD possess relative elements that encompass a precise representation of reality, enable easy interaction, and provide a highly realistic and immersive experience for users in the simulated environment. While the VR models with low LOD represent the opposite, leading to a simplified simulated environment and sacrificing realism and accuracy of the interaction. To be more specific in this research, high scenario fidelity corresponded to rendering realistic ground, containers, pallets, warehouse, and buildings in the construction site while low scenario fidelity only included simple wireframe walls, direction arrows, and the destination box in the scene. For interaction fidelity, the market offers various input devices, such as a keyboard, controller, navigation, hand-tracking devices, body tracking devices, etc. (McMahan, 2011; Anthes et al., 2016). McMahan (2011) noted that keyboards, mice, VR controllers, and game controllers all belonged to the same level of fidelity because one can only use buttons to provide a similar degree of control over objects in the VR environment. Even though these devices provide sufficient controls for forklift operations, they are quite different from real forklift controls that use a steering wheel and pedals. Therefore, we chose a keyboard as low interaction fidelity and a steering wheel and pedals as high interaction fidelity. The sense of presence was measured through post-questionnaire survey while the usability was represented by the completion time of VR training. Fig. 1 shows the research framework with independent and dependent variables of the experimental design.

3.1. Hypotheses

The following three research questions were intended to be addressed by this research design: (1) Do different levels of scenario fidelity (e.g., different degrees of detail representing a construction site) have an impact on trainees’ sense of presence or usability in IVR-based safety training? (2) Do different levels of interaction fidelity influence trainees’ sense of presence or usability in IVR-based safety training? (3) Do scenario fidelity and interaction fidelity have any interactions in creating those effects? These questions with meaningful answers can provide insights into the most critical conditions affecting the effectiveness of an IVR-based safety training system and the efficiency creating one. Fig. 3 visualizes the hypotheses and the experiment design used to collect data to test the hypotheses.

For this experiment, an interactive IVR-based forklift operation safety training system was used. Specifically, four different training tasks, covering basic forklift driving, loading, and transportation operations, were utilized in this study. The high interaction fidelity condition of the system was realized by setting it up with a steering wheel and pedals, while the low interaction fidelity condition was realized by setting up a keyboard. The idea behind these settings is that the steering wheel and pedals are similar to the control devices of a real forklift, thereby providing a more realistic feeling of driving a forklift than a keyboard. On the one hand, the condition of high scenario fidelity was created by adding more background details to the virtual environment so that the VR user might feel that they are on a construction site. On the other hand, the low scenario fidelity condition was created by removing those background objects that represented items at a construction site, as shown in Fig. 2. These variations in scenario fidelity and interaction fidelity allow the research team to test whether and how much a user’s sense of presence and usability in the IVR training system is affected by these conditions, i.e., the three hypotheses.

![Fig. 1. Research framework: LOD stands for Level of Development.](image-url)
3.2. Apparatus

The IVR-based safety training program was run on a Dell G3 laptop, with an Intel(R) Core (TM) i7-8750h CPU at 2.20 GHz, 8 GB of RAM, and a GTX 1060 Graphic card. All participants were equipped with a head-mounted display (Samsung Odyssey +) (2018). This HMD involves cutting-edge technology with a dual 3.5-inch Anti-SDE AMOLED display offering up to a 110-degree field of view and a resolution of $1440 \times 1600$ pixels per eye. It also features an exceptional AKG built-in headphone that supports 360-degree spatial audio.

For control devices, a Logitech G29 device, which includes a steering wheel and pedals, was used to create the high interaction fidelity condition. The control device used to create the low interaction fidelity condition was the normal, built-in keyboard on the laptop. In the latter case, the up and down arrow keys were used to accelerate or brake the forklift, the left and right arrow keys were used for turning, and the control and 0 keys on the side were used for gear shifting. In both settings, a gaming joystick was used to control the fork of the forklift, for example, by moving the fork up and down or tilting it. Figs. 4 and 5 show the different control device settings given to the two groups of participants in the experiment.

3.3. Training modules performed by participants

The IVR-based forklift operation safety training program consists of four modules: (1) training introduction, (2) forklift driving training, (3) forklift lifting training, and (4) task-based training, as shown in Fig. 6. These training scenarios cover the most basic forklift operation tasks,
including pre-operation, traveling, maneuvering, and load handling. In all modules, the user is guided by pop-up instruction messages telling them what to do and what to be cautious about. According to OSHA forklift operation instruction (Occupational Safety and Health Administration (OSHA), 2022), eight forklift safe operation guidelines are embedded in the training program, including (1) check surroundings before forklift driving, (2) drive slowly, (3) look in the direction of travel, (4) no operation of forks while moving, (5) approach pallet safely, (6) load pallet correctly, (7) secure pallet, and (8) travel with forks at the lowest safe height, and users receive real-time feedback messages on how they are performing against each of the safety guidelines as they go through the training modules. Whenever the user violates any of the guidelines, a feedback message box pops up on the display, instructing them regarding what went wrong. It may require the user to restart the task or the entire scenario if they keep ignoring the warning messages. This feedback-based learning model is enabled as the IVR training system monitors every move that the user makes with their head, hands, and feet using the sensors in the HMD and VR control devices.

3.4. Measurement

The most common approach to measuring the sense of presence in VR is the post-test questionnaire. The questionnaire used in this study was adapted from the Igroup Presence Questionnaire (IPQ) (Schubert et al., 2001) and Witmer and Singer’s Presence Questionnaire (WSPQ) (Witmer and Singer, 1998), both of which are the most widely used and well-established instruments for measuring the sense of presence. The WSPQ consists of measuring control factors, sensory factors, distraction factors, and realism factors, and the measurement system is regarded as reliable and mature (Witmer and Singer, 1998). Sample questions included in the WSPQ are “How responsive was the environment to actions that you initiated (or performed)?” and “How proficient in moving and interacting with the virtual environment did you feel in the experiment?”

One weakness of the WSPQ is that it measures factors that affect presence but not the sense of presence itself (Slater, 1999). To address this issue, this study also adapted elements of the IPQ, which is deemed to measure the sense of presence more directly (Schubert et al., 2001). IPQ includes four sections corresponding to four factors: general presence, spatial presence involvement, and experienced realism. The IPQ therefore focuses more on the subjective feelings of perception, sensation, awareness, and attention than the realism of operation (Slater, 1999; Schubert et al., 2001). An example of the type of question or statement considered in the IPQ is: “I had a sense of acting in the virtual space rather than operating something from outside.”

Researchers have criticized both these questionnaires for not including any questions about uncomfortable feelings a VR user might experience, such as feeling dizzy or sick (Bowman and McMahan, 2007), which is one of the potentially important dimensions affecting the sense of presence. For this reason, this study included one more question, “Did you feel dizzy or sick while operating the forklift in the IVR environment?” to measure the aspect of comfort as well. Table 1 shows the resulting, comprehensive questionnaire used in the research to measure the sense of presence. For each of the measurement items, the participants provide a response on a five-point Likert scale based on how much they agree with the statement.

To measure usability, the task completion times of four forklift safety training VR tasks were recorded. These four tasks were mainly to experience the VR safety training environment, not to learn forklift operation skills. Task completion time is a reliable and objective usability indicator, and it can also reflect the operability of the VR system and the convenience of user operations.

3.5. Participants and procedure

For this experiment, graduate students from the Faculty of Construction and Environment at Hong Kong Polytechnic University were recruited. A total of 120 participants (73 male, 47 female) aged 27 years old on average participated in this study, and they were randomly allocated into four different groups: (1) high-interaction-fidelity and high-scenario-fidelity group (HIHS-IVR, N = 30); (2) low-interaction-fidelity and high-scenario-fidelity group (LIHS-IVR, N = 30); (3) high-interaction-fidelity and low-scenario-fidelity group (HILS-IVR, N = 30); and (4) low-interaction-fidelity and low-scenario-fidelity group (LILS-IVR, N = 30). All participants had a background in civil engineering, and each participant engaged in the experiment alone while guided by the experimenter.

Fig. 7 shows the procedure that each participant followed in their session. When they arrived at the experiment room, they were given a brief introduction of the research background and goals, and their consent was collected. Then, they were given a brief instruction on how to put on the headset, use the control devices, and start up the software program. Then, the timer was reset to record the entire time the participant took to finish all four training modules. After finishing all four modules, participants were asked to fill out the PQ used in this.
### Table 1
Presence questionnaire (PQ).

<table>
<thead>
<tr>
<th>Category</th>
<th>Subscale</th>
<th>Question/Statement</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Presence (GENP)</td>
<td>GENP1</td>
<td>In the computer-generated world, I had a sense of “being there.”</td>
<td>IPQ</td>
</tr>
<tr>
<td>Spatial Presence (SPAP)</td>
<td>SPAP1</td>
<td>Somehow, I felt that the virtual world surrounded me.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>SPAP2</td>
<td>I felt like I was just perceiving pictures.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>SPAP3</td>
<td>I did not feel present in the virtual space.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>SPAP4</td>
<td>I had a sense of acting in the virtual space rather than operating something from outside.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>SPAP5</td>
<td>I felt present in the virtual space.</td>
<td>IPQ</td>
</tr>
<tr>
<td>Sensory Stimuli (SENS)</td>
<td>SENS1</td>
<td>How much did the visual aspects of the environment involve you?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>SENS2</td>
<td>How much did the auditory aspects of the environment involve you?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>SENS3</td>
<td>How well could you identify sounds?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>SENS4</td>
<td>How well could you actively survey or search the virtual environment using the device (e.g., wheel, joystick)?</td>
<td>WSPQ</td>
</tr>
<tr>
<td>Involvement (INV)</td>
<td>INV1</td>
<td>I was not aware of my real environment.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>INV2</td>
<td>I was completely captivated by the virtual world.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>INV3</td>
<td>How responsive was the environment to actions that you initiated (or performed)?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>INV4</td>
<td>How compelling was your sense of objects moving through space?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>INV5</td>
<td>How involved were you in the virtual environment experience?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>INV6</td>
<td>How proficient in moving and interacting with the virtual environment did you feel at the end of the experience?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>INV7</td>
<td>How well could you concentrate on the assigned tasks or required activities rather than on the mechanisms used to perform those tasks or activities?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>INV8</td>
<td>Were you involved in the experimental task to the extent that you lost track of time?</td>
<td>WSPQ</td>
</tr>
<tr>
<td>Realism (REAL)</td>
<td>REAL1</td>
<td>How real did the virtual world seem to you?</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>REAL2</td>
<td>How natural did your interactions with the environment seem?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>REAL3</td>
<td>How natural was the mechanism that controlled movement through the environment?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>REAL4</td>
<td>How much did your experiences in the virtual environment seem consistent with your real-world experiences?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>REAL5</td>
<td>How well could you move or manipulate objects in the virtual environment?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>REAL6</td>
<td>How much delay did you experience between your actions and expected outcomes?</td>
<td>WSPQ</td>
</tr>
<tr>
<td>Distraction (DISTRC)</td>
<td>DISTRC1</td>
<td>I still paid attention to the real environment.</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>DISTRC2</td>
<td>How aware were you of the real world surrounding you while navigating in the virtual world (i.e., sounds, room temperature, other people, etc.)?</td>
<td>IPQ</td>
</tr>
<tr>
<td></td>
<td>DISTRC3</td>
<td>To what extent did events occurring outside the virtual environment distract from your experience in the virtual environment?</td>
<td>WSPQ</td>
</tr>
<tr>
<td></td>
<td>DISTRC4</td>
<td>How much did you focus on using the display and control devices instead of the virtual experience and experimental tasks?</td>
<td>WSPQ</td>
</tr>
</tbody>
</table>

### Table 1 (continued)

<table>
<thead>
<tr>
<th>Category</th>
<th>Subscale</th>
<th>Question/Statement</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncomfortable Feeling (UNF)</td>
<td>UNF1</td>
<td>Did you feel dizzy while operating the forklift in the IVR environment?</td>
<td>WSPQ</td>
</tr>
</tbody>
</table>

Note: IPQ: Igroup Presence Questionnaire; WSPQ: Witmer & Singer’s Presence Questionnaire.

### 3.6. Analysis of experimental data

The questionnaire data were analyzed using IBM SPSS Statistics 25 software. As there are two independent variables, scenario fidelity and interaction fidelity, and the experiment was conducted following a two-by-two factorial design, a two-way analysis of variance (two-way ANOVA) test was deemed most suitable to test the influence of any of the independent variables as well as their interactive effect on the dependent variables (i.e., the sense of presence ratings and the task completion time).

### 4. Results

#### 4.1. Difference in the sense of presence under different fidelity conditions

##### 4.1.1. Difference in the presence total mean score between different groups

Tables 2 and 3 show the results of the two-way ANOVA test on the presence score. It is shown that scenario fidelity has the main effect (F(1,116) = 9.338 and p = 0.003) on the presence score in terms of the results of high LOD (M = 3.413, SD = 0.334) and low LOD (M = 3.233, SD = 0.311), respectively. In comparison, interaction fidelity does not show any statistically significant impact (F(1,116) = 1.690, p = 0.196) on the presence score. Additionally, the two-way ANOVA results show that there is no interaction effect between scenario fidelity and interaction fidelity (F(1,116) = 0.153, p = 0.696), which means that the effect of scenario fidelity on the sense of presence is not influenced by the levels of interaction fidelity and vice versa.

The results can be more intuitively reflected in the pairwise comparisons, as shown in Table 4 and Table 5. In the pairwise comparisons of scenario fidelity, the mean difference between high LOD and low LOD is 0.203 (p = 0.016) and 0.157 (p = 0.046) under the same device group of wheel steering or keyboard. In the pairwise comparisons of interaction fidelity, meanwhile, the mean difference between wheel steering and keyboard is 0.100 (p = 0.234) and 0.054 (p = 0.522) under the same background condition of high LOD or low LOD. Fig. 8 visualizes this result; the bar graph showing the mean of the sense of presence score result; the bar graph showing the mean of the sense of presence score.

The bar graph showing the mean of the sense of presence score does indicate a difference between the high LOD and low LOD groups, but there is no such noticeable difference between the wheel steering and keyboard groups. This result is relevant to the participants, on average, reported a different level of sense of presence when their IVR training environment had a different level of detail representing a construction site, but their sense of presence ratings did not significantly differ when they were operating the VR forklift with a more realistic control device such as a steering wheel and pedals or just a keyboard.

#### 4.1.2. Detailed analysis of presence subscales

GENP, SPAP, SENS, INV, REAL, DISTRC, and UNF are the seven subscales of presence identified here. We conducted the pairwise
The mean difference is significant at the 0.05 level.

LOD: Level of Development.

Table 4
Pairwise comparisons: scenario fidelity.

<table>
<thead>
<tr>
<th>Interaction fidelity</th>
<th>Scenario Fidelity</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig. a</th>
<th>95% Confidence Interval for Difference a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel steering</td>
<td>High LOD</td>
<td>0.203</td>
<td>0.083</td>
<td>0.016*</td>
<td>0.038 to 0.368</td>
</tr>
<tr>
<td></td>
<td>Low LOD</td>
<td>0.157</td>
<td>0.083</td>
<td>0.046*</td>
<td>−0.008 to 0.322</td>
</tr>
</tbody>
</table>

Lod: Level of Development.

a The mean difference is significant at the 0.05 level.

a Adjustment for multiple comparisons: Bonferroni.

did not show significant differences between two levels of scenario fidelity, it still showed a certain difference in the presence score (Have EN = 3.742, No EN = 3.588), which can still reflect an increase in visual stimulation. When it comes to interaction fidelity, only the subscale of SENS showed significant differences (F (1,116) = 4.62, p = 0.034), which can well elaborate that the steering wheel and the keyboard did provide different tactile stimuli for the user. In addition, the presence scores of SPAP and INV in the steering wheel group did show a slight distinction from the keyboard users, with results of 3.690 vs. 3.587 and 3.610 vs. 3.498. These may imply that the steering wheel contributes to the feeling of space and involvement even though these devices were not in the participants’ line of sight.

4.2. Difference in task completion times under different fidelity conditions

The results of the two-way ANOVA test on completion time were consistent with the presence total mean scores. As can be seen in Tables 8 and 9, scenario fidelity also showed the main effect (F (1,116) = 27.191, p = 0.000) on completion time, with its two levels corresponding to 26.217 min and 20.233 min, respectively. Interaction fidelity did not show a significant difference between the steering wheel and keyboard in terms of results for completion times (F(1,116) = 0.000, p = 0.988), and their completion times at these two levels were almost the same, corresponding to 23.217 min and 23.233 min, respectively. In addition, there was no interaction effect on completion time between scenario fidelity and interaction fidelity (F = 0.026, p = 0.873).

As can be seen more intuitively from Fig. 9, based on the results of pairwise comparisons, under the condition of using the same set of external devices, the task completion time appeared to show a significant difference when changing the scene fidelity of the internal IVR environment. The mean difference for the steering wheel group is 6.167 min (p = 0.000) between high LOD and low LOD, while that for the keyboard group is 5.800 min (p = 0.001), as shown in Table 10. Although there were many operational tasks in the IVR model, such as driving the forklift forward, reversing the forklift, operating the fork, and lifting the pallet, there was surprisingly little difference between the two variants of external device in terms of completion time, with mean difference results of 0.617 min (p = 0.000) between high LOD and low LOD, while that for the keyboard group is 5.800 min (p = 0.001), as shown in Table 10.

Although there were many operational tasks in the IVR model, such as driving the forklift forward, reversing the forklift, operating the fork, and lifting the pallet, there was surprisingly little difference between the two variants of external device in terms of completion time, with mean difference results of 0.617 min (p = 0.000) between high LOD and low LOD, while that for the keyboard group is 5.800 min (p = 0.001), as shown in Table 10.

As can be seen more intuitively from Fig. 9, based on the results of pairwise comparisons, under the condition of using the same set of external devices, the task completion time appeared to show a significant difference when changing the scene fidelity of the internal IVR environment. The mean difference for the steering wheel group is 6.167 min (p = 0.000) between high LOD and low LOD, while that for the keyboard group is 5.800 min (p = 0.001), as shown in Table 10. Although there were many operational tasks in the IVR model, such as driving the forklift forward, reversing the forklift, operating the fork, and lifting the pallet, there was surprisingly little difference between the two variants of external device in terms of completion time, with mean difference results of 0.617 min (p = 0.000) between high LOD and low LOD, while that for the keyboard group is 5.800 min (p = 0.001), as shown in Table 10.
5. Discussion

This study aimed to investigate two kinds of fidelities represented by the IVR system. This was achieved by conducting an IVR-based forklift operation training program. The degree of scenario fidelity was changed

Table 5
Pairwise comparisons: interaction fidelity.

<table>
<thead>
<tr>
<th>Scenario fidelity</th>
<th>Interaction Fidelity</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD: Level of Development.</td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High LOD</td>
<td>Wheel steering</td>
<td>0.100</td>
<td>0.234</td>
<td>0.065</td>
<td>0.265</td>
</tr>
<tr>
<td>Low LOD</td>
<td>Wheel steering</td>
<td>0.054</td>
<td>0.522</td>
<td>0.112</td>
<td>0.219</td>
</tr>
</tbody>
</table>

* Adjustment for multiple comparisons: Bonferroni.

Table 6
Pairwise comparisons for presence subscale: scenario fidelity.

<table>
<thead>
<tr>
<th>Presence Subscale</th>
<th>Score</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD: Level of Development.</td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General presence (GENP)</td>
<td>4.083</td>
<td>0.367</td>
<td>0.150</td>
<td>0.016*</td>
<td>0.069</td>
</tr>
<tr>
<td>Spatial presence (SPAP)</td>
<td>3.757</td>
<td>0.237</td>
<td>0.098</td>
<td>0.017*</td>
<td>0.043</td>
</tr>
<tr>
<td>Sensory stimuli (SENS)</td>
<td>3.742</td>
<td>0.154</td>
<td>0.110</td>
<td>0.166</td>
<td>-0.065</td>
</tr>
<tr>
<td>Involvement (INV)</td>
<td>3.581</td>
<td>0.053</td>
<td>0.094</td>
<td>0.571</td>
<td>-0.133</td>
</tr>
<tr>
<td>Realism (REAL)</td>
<td>3.670</td>
<td>0.106</td>
<td>0.097</td>
<td>0.276</td>
<td>-0.086</td>
</tr>
<tr>
<td>Distraction (DISTRC)</td>
<td>2.741</td>
<td>-0.056</td>
<td>0.080</td>
<td>0.483</td>
<td>-0.215</td>
</tr>
<tr>
<td>Uncomfortable feeling (UNF)</td>
<td>2.317</td>
<td>0.400</td>
<td>0.197</td>
<td>0.045*</td>
<td>0.009</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.

* Adjustment for multiple comparisons: Bonferroni.

Table 7
Pairwise comparisons for presence subscale: interaction fidelity.

<table>
<thead>
<tr>
<th>Presence Subscale</th>
<th>Score</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD: Level of Development.</td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General presence</td>
<td>3.883</td>
<td>-0.033</td>
<td>0.150</td>
<td>0.825</td>
<td>-0.331</td>
</tr>
<tr>
<td>Spatial presence</td>
<td>3.690</td>
<td>0.103</td>
<td>0.098</td>
<td>0.294</td>
<td>-0.091</td>
</tr>
<tr>
<td>Sensory stimuli</td>
<td>3.783</td>
<td>0.237</td>
<td>0.110</td>
<td>0.034*</td>
<td>0.019</td>
</tr>
<tr>
<td>Involvement</td>
<td>3.610</td>
<td>0.112</td>
<td>0.094</td>
<td>0.234</td>
<td>-0.074</td>
</tr>
<tr>
<td>Realism</td>
<td>3.644</td>
<td>0.056</td>
<td>0.097</td>
<td>0.566</td>
<td>-0.136</td>
</tr>
<tr>
<td>Distraction</td>
<td>2.766</td>
<td>-0.006</td>
<td>0.080</td>
<td>0.940</td>
<td>-0.165</td>
</tr>
<tr>
<td>Uncomfortable feeling</td>
<td>2.150</td>
<td>0.067</td>
<td>0.197</td>
<td>0.736</td>
<td>-0.324</td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.

* Adjustment for multiple comparisons: Bonferroni.
As the sense of presence is an important indicator of how much the user feels that the situation is real, it is logical to expect that the user (or trainee) will be more engaged with the simulated environment and the learning tasks when they feel a strong sense of presence. Such a positive relationship between engagement and training/learning effectiveness in the context of IVR-based learning is supported by previous research findings (Crandall and Karadaghi, 2017, p.1073): “The identification of relations between events … and actions to perform, as well as relations between performed or omitted actions … had thus a more prominent role than the acquisition of accurate spatial information. Therefore, scenario fidelity could have played a more important role than display fidelity in learning the procedures.”

As the sense of presence is an important indicator of how much the user feels that the situation is real, it is logical to expect that the user (or trainee) will be more engaged with the simulated environment and the learning tasks when they feel a strong sense of presence. Such a positive relationship between engagement and training/learning effectiveness in the context of IVR-based learning is supported by previous research findings (Crandall and Karadaghi, 2017, p.1073): “The identification of relations between events … and actions to perform, as well as relations between performed or omitted actions … had thus a more prominent role than the acquisition of accurate spatial information. Therefore, scenario fidelity could have played a more important role than display fidelity in learning the procedures.”

5.1. The sense of presence in different levels of scenario fidelity

The result that a difference in the level of scenario fidelity leads to a difference in the sense of presence highlights the importance of the realism of a simulated virtual environment in the context of IVR-based safety training. In particular, the results of the analysis on the subscales of presence, which show a difference between the high and low fidelity groups, help us understand which aspects of the sense of presence are affected by such differences in the virtual environment. The user feels much less of a sense of “being there” or “feeling present in the virtual space” in the case of low scenario fidelity (as in the GENP and SPAP questionnaire items). These findings resonate with those of Buttussi and Chittaro (2017, p.1073): “The identification of relations between events … and actions to perform, as well as relations between performed or omitted actions … had thus a more prominent role than the acquisition of accurate spatial information. Therefore, scenario fidelity could have played a more important role than display fidelity in learning the procedures.”

The finding that differences in degrees of interaction fidelity do not lead to a significant difference in the sense of presence might imply that an IVR-based safety training system that uses generic VR control devices, such as handheld VR controllers or even a keyboard, can still be effective for training purposes. High interaction fidelity (such as steering wheels, pedals, levers, and buttons exactly as those used in a real forklift) can still be effective for training purposes. High interaction fidelity (such as steering wheels, pedals, levers, and buttons exactly as those used in a real forklift), which enables a full range of actions to be performed by the trainee in a variety

Table 9
Tests of between-subject effects: task completion time.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario fidelity</td>
<td>1074.008</td>
<td>1</td>
<td>1074.008</td>
<td>27.191</td>
<td>0.000*</td>
</tr>
<tr>
<td>Interaction fidelity</td>
<td>0.008</td>
<td>1</td>
<td>0.008</td>
<td>0.000</td>
<td>0.988</td>
</tr>
<tr>
<td>Scenario fidelity</td>
<td>1.008</td>
<td>1</td>
<td>1.008</td>
<td>0.026</td>
<td>0.873</td>
</tr>
<tr>
<td>Interaction fidelity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>4581.900</td>
<td>116</td>
<td>39.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70385.000</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.

Adjustment for multiple comparisons: Bonferroni.

Table 10
Pairwise comparisons: scenario fidelity.

<table>
<thead>
<tr>
<th>Interaction fidelity</th>
<th>Scenario Fidelity</th>
<th>Mean Difference (I-J) (min)</th>
<th>Std. Error</th>
<th>Sig.*</th>
<th>95% Confidence Interval for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I)</td>
<td>(J)</td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Wheel steering</td>
<td>High LOD</td>
<td>6.167</td>
<td>1.623</td>
<td>0.000*</td>
<td>2.953</td>
</tr>
<tr>
<td>Keyboard</td>
<td>High LOD</td>
<td>5.800</td>
<td>1.623</td>
<td>0.001*</td>
<td>2.586</td>
</tr>
<tr>
<td>LOD: Level of Development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adjustment for multiple comparisons: Bonferroni.</td>
</tr>
<tr>
<td>Wheel steering</td>
<td>Low LOD</td>
<td>0.167</td>
<td>1.623</td>
<td>0.918</td>
<td>-3.047</td>
</tr>
<tr>
<td>Keyboard</td>
<td>Low LOD</td>
<td>-0.200</td>
<td>1.623</td>
<td>0.902</td>
<td>-3.414</td>
</tr>
</tbody>
</table>

 LOD: Level of Development. |               |                             |            |       | Adjustment for multiple comparisons: Bonferroni. |

Table 11
Pairwise comparisons: interaction fidelity.

<table>
<thead>
<tr>
<th>Scenario fidelity</th>
<th>Interaction Fidelity</th>
<th>Mean Difference (I-J) (min)</th>
<th>Std. Error</th>
<th>Sig.*</th>
<th>95% Confidence Interval for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I)</td>
<td>(J)</td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>High LOD</td>
<td>Wheel steering</td>
<td>0.167</td>
<td>1.623</td>
<td>0.918</td>
<td>-3.047</td>
</tr>
<tr>
<td>Low LOD</td>
<td>Wheel steering</td>
<td>-0.200</td>
<td>1.623</td>
<td>0.902</td>
<td>-3.414</td>
</tr>
</tbody>
</table>

 LOD: Level of Development. |               |                             |            |       | Adjustment for multiple comparisons: Bonferroni. |
of situations, is often highly impractical or extremely costly in most normal circumstances. Accordingly, this research finding helps to remove some of the burden of designing highly complicated, realistic control interfaces for every IVR-based training system. However, there is a caveat. The reason that interaction fidelity appears to be less important in the results may be because the measurement items used in this research (e.g., IPQ and WSPQ) are not closely linked with motor controls. If the purpose of an IVR-based training system is to consider such motor-control aspects, then the realness of the control interface and devices would instead be of utmost importance. When, however, the training purpose is mostly about perceptions, awareness, and conscious decision making, the low level of interaction fidelity can still be tolerated and does not critically damage the effectiveness of the training system.

5.3. The subscale of presence: personal discomfort

In terms of the subscales of presence, it is worth mentioning that the experience of personal discomfort (e.g., dizziness) in the IVR environment does not seem to impact the user training experience, based on the results that UNF has a relatively low score in terms of the sense of presence. Other researchers have also found that simulator sickness does not occur frequently and has no apparent impact on task performance (Grassini et al., 2020). A low level of UNF experience was directly supported by the fact that no participant decided to quit the experiment because of UNF symptoms. Intriguingly, it was found that UNF has a relatively higher score when there is a higher level of scenario fidelity; participants tend to have a greater degree of discomfort when more details of texture are added to the IVR scenario (Jaeger and Mourtant, 2001; Davis et al., 2015; Chang et al., 2020). This finding is in line with the work of Chang et al. (2020, p.1669) “This unexpected result might originate from the sensory discrepancy between visual and vestibular information.” In other words, the more realistic the simulated environment, the stronger the participants’ sense of immersion and participation; but when the participants drove the forklift in IVR, they were still sitting in a chair in the actual environment, which would continuously cause a conflict between visual and vestibular information, so their degree of discomfort increased.

5.4. Usability in both scenario and interaction fidelity

For the metric of usability, significant differences were observed for task completion time when the scenario fidelity was changed but not when the degree of interaction fidelity was adjusted. Participants spent a longer completion time in a simulated IVR scene in high LOD. This implies that when the details or complexity of an environment increase and users become more immersed in the virtual experience, they may need more time to complete the task. Some researchers point out that task completion time can be regarded as one of the objective measurements of cognitive load (DeLeeuw and Mayer, 2008; Chevalier et al., 2009; Han et al., 2021). Studies have shown that using even simple VR techniques in education and training can increase the cognitive load of users compared with traditional training methods such as video because the virtual environment requires more cognitive resources and working memory (Meyer et al., 2019; Ebnali et al., 2021).

This balance between engagement and complexity is worth exploring. While it is understood that VR technology can enhance a user’s training interest, motivation, and performance (Han et al., 2021; Chen et al., 2022), excessive VR scene details or animations can distract users and increase their cognitive load (Parong and Mayer 2018), thus affecting their training experience and task performance (Chen et al., 2022). Fasbinder (1994) and Posner and Petersen (1990) have pointed out that it is important to achieve an appropriate level of cognitive load because an individual’s cognitive resources are limited, and a heavy cognitive load can impair an individual’s performance when information overload occurs. That is not to say the simplest scenario is the best, but rather that VR materials can be simplified as much as necessary to meet the training requirements (Meyer et al., 2019; Chen et al., 2022). Hence, perfecting the VR scenario requires a fine balance. The design of a VR training system should fully consider all its components, characteristics, and effectiveness to avoid placing an unnecessary cognitive load on a user during training.

6. Contributions

The findings of this study have several theoretical and practical implications. Even though this study focused on VR-based forklift safety training, it is believed that these findings could provide useful insight into designing VR safety training modules for other types of construction equipment. First of all, one of the important theoretical contributions of this study is the systematic exploration of virtual reality training systems by identifying the impact of different fidelities on safety training. This research uncovered that interaction fidelity may have less impact on the sense of presence and usability, and this could imply that we can pay less attention to the input devices of VR systems and look for relatively inexpensive alternatives when adopting VR systems for safety knowledge training. Secondly, this study also highlights the importance of scenario fidelity in VR safety training because of its significant impact on the sense of presence and usability. A high level of scenario fidelity not only improves the sense of presence but also increases the task completion time of four safety training tasks. This may imply that high scenario fidelity may increase users’ cognitive load as the scene becomes more complicated. Therefore, it is important to fully understand the trade-off between realism and abstraction in the context of safety training. Thirdly, other researchers can use the framework in this study to explore other fidelity measures, such as display fidelity, or conduct a deeper study on scenario fidelity, such as by providing other VR elements to test the learning in the context of different VR-based safety training programs. Last but not least, findings from this study can be applied when designing other mixed reality-based training systems, such as augmented reality-based ones, since these training systems have similar fidelity components.

7. Limitations and future directions

There are several limitations in the present study that suggest avenues for future research. This study was conducted to discover how different levels of scenario fidelity and interaction fidelity affect the user’s training experience, especially in terms of their sense of presence and usability. Although the presence questionnaire is based on two valid measurements, it is still limited in a subjective way. Objective methods such as electroencephalogram (EEG) and skin conductance may offer other means of measuring the sense of presence. It should also be noted that we only adopted completion time as the metric of usability, which may not fully reflect the full user training experience in terms of evaluation criteria. More outcomes, such as task performance accuracy, learning engagement, learning attitude, and cognitive load, can be considered in future studies. Furthermore, it is best to systematically consider experimental design along the fidelity continuum, such as adopting low, medium, and high levels of scene fidelity and interaction fidelity to generate multilevel comparisons of results to avoid experimental bias. In addition, because the four forklift operation tasks conducted in this experiment focused more on IVR training experience than skill training, it can be more cautious to adopt the findings in this study when applied to operation skill training (Pedram et al., 2020). Meanwhile, the training programs can also provide more safety knowledge and skills in the future. Lastly, the subjects in this study were novice forklift drivers. Such a novice training group does not represent how the entire forklift operator community feels about VR training environments. It should be noted that the forklift safety training tasks used in the study were designed to give participants an understanding of the operating environment for those who do not have any prior experience.
driving a forklift. Therefore, the graduate students participating in the experiment could be suitable for the VR tasks in this study. However, experienced forklift operators may have different opinions. Therefore, further studies would be needed to see if there is any impact of such prior experience of operating an accurate forklift on their VR-based training experience and usability.

8. Conclusion

The emergence of new technologies such as IVR provides an opportunity to achieve more precise and personalized services for safety training. This study systematically compares the effects of two components of an IVR system, namely scenario fidelity and interaction fidelity, on the user training experience by measuring the sense of presence and task completion time. Results from a study of 120 participants show that scenario fidelity has a significant effect on both presence and completion time, while interaction fidelity has no effect on either. The sense of presence is an important indicator of how real users feel the IVR scenarios are, and this in turn affects their learning motivation and engagement. Presence, therefore, highlights the importance of scenario realism in an IVR-based training system. At the same time, it has been pointed out that certain external devices are not that necessary if the training is primarily about user satisfaction, perceptions, awareness, and conscious decision-making. This illustrates that the realism of the IVR scenarios is more important than the authenticity of the IVR control interface for the user training experience. It was found that participants spent more time on scenarios with a detailed environment than ones with fewer details, since task completion time correlates with the cognitive load of users.

The findings of this study provide significant implications for simulator designers and safety practitioners in terms of effective and economic applications of IVR-based safety training. The research results imply that creating realistic VR scenes would be important for enhancing trainees’ training experience, while including all the visual details in the scene might not help increase training outcomes. A hypothesis that can be constructed based on the result is that the complicated visual details in the VR environment increase the trainees’ cognitive load and may not help with increasing training effectiveness or efficiency. Based on these implications, it may be possible to recommend that VR-trainer simulator training system developers focus on creating realistic scenarios for training while worrying less about the realism of the scenes and visual details of the simulated environment in VR. From a safety practitioner’s point of view, it is a promising result that interaction fidelity can be addressed with fewer efforts when the trainings concern more about cognitive skills and decision-making skills.

Despite the usefulness of these findings in terms of IVR training design, we should be careful when interpreting the results for different types of training. Safety training is largely about developing cognitive and decision-making skills related to what to look for and what to do in design, while worrying less about the realism of the scenes that VR-simulator training system developers focus on creating realistic efficiency. Based on these implications, it may be possible to recommend certain situations for the safety of oneself and co-workers. This could be types of training. Safety training is largely about developing cognitive skills and decision-making skills.

9. Acknowledgments

This research study was supported by the General Research Fund (PolyU 15220519) from the Research Grants Council, Hong Kong, and the 2022 Hongkong University Research Fund, Republic of Korea.

References


Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Developments in the Built Environment 16 (2023) 100223
Y. Luo et al.

Ebnali, M., Lamb, R., Fathi, R., Hulme, K., 2021. Virtual reality tour for first-time users of


Hooks, K., Ferguson, W., Morillo, P., Cruz-Neira, C., 2020. Evaluating the user experience


Dahlstrom, N., Dekker, S., van Winsen, R., Nyce, J., 2017. Fidelity and validity of

Jaeger, B.K., Mourant, R.R., 2001. Comparison of simulator sickness using static and

Grabowski, A., 2021. Practical skills training in enclosure fires: an experimental study

Cummings, J.J., Bailenson, J.N., 2016. How immersive is enough? A meta-analysis of the

Kim, Y.M., Rhiu, I., 2021. A comparative study of navigation interfaces in virtual reality

Chevalier, A., Fouqueau, N., Vanderdonckt, J., 2009. The influence of a knowledge-


Development of knowledge of fire warden VR training system using a HMD. VISIGRAPP 2017 -

Pedram, S., Palmisano, S., Skarbez, R., Perez, P., Farrelly, M., 2020. Investigating the

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and


Hasanzadeh, S., Sussman, A., 2017. User experience of the development of a fire warden VR training system using a HMD. VISIGRAPP 2017 -


Hasanzadeh, S., Sussman, A., 2017. User experience of the development of a fire warden VR training system using a HMD. VISIGRAPP 2017 -


Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and

Hasanzadeh, S., Sussman, A., 2017. User experience of the development of a fire warden VR training system using a HMD. VISIGRAPP 2017 -

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and

Hasanzadeh, S., Sussman, A., 2017. User experience of the development of a fire warden VR training system using a HMD. VISIGRAPP 2017 -

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and

Hasanzadeh, S., Sussman, A., 2017. User experience of the development of a fire warden VR training system using a HMD. VISIGRAPP 2017 -

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and

Hammer, S., Karagas, S., 2021. E-learning: A practical guide to improve learning and


