

Practical Anti-Fuzzing Techniques With Performance Optimization

ZHOU, Zhengxiang; WANG, Cong

Published in:
IEEE Open Journal of the Computer Society

Published: 01/01/2023

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY-NC-ND

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1109/OJCS.2023.3301883

Publication details:
ZHOU, Z., & WANG, C. (2023). Practical Anti-Fuzzing Techniques With Performance Optimization. IEEE Open
Journal of the Computer Society, 4, 206-217. https://doi.org/10.1109/OJCS.2023.3301883

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author
Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that
you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal
requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity
or commercial gain.
Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA
RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers
allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will
remove access to the work immediately and investigate your claim.

Download date: 24/05/2025

https://scholars.cityu.edu.hk/en/publications/practical-antifuzzing-techniques-with-performance-optimization(9575ac18-60ea-4134-8633-44f2dc83eea3).html
https://doi.org/10.1109/OJCS.2023.3301883
https://scholars.cityu.edu.hk/en/persons/zhengxiang-zhou(065bd485-f9cf-4a9a-8115-fbb689de14b1).html
https://scholars.cityu.edu.hk/en/persons/cong-wang(f5740c19-f6fa-4e91-a91d-5ffa518c5ece).html
https://scholars.cityu.edu.hk/en/publications/practical-antifuzzing-techniques-with-performance-optimization(9575ac18-60ea-4134-8633-44f2dc83eea3).html
https://scholars.cityu.edu.hk/en/journals/ieee-open-journal-of-the-computer-society(7e1343db-5d67-4d91-87e4-6a4bf4fd84c9)/publications.html
https://scholars.cityu.edu.hk/en/journals/ieee-open-journal-of-the-computer-society(7e1343db-5d67-4d91-87e4-6a4bf4fd84c9)/publications.html
https://doi.org/10.1109/OJCS.2023.3301883

Received 8 July 2023; accepted 1 August 2023. Date of publication 4 August 2023;
date of current version 22 August 2023. The review of this article was arranged by Associate Editor Quan Chen.

Digital Object Identifier 10.1109/OJCS.2023.3301883

Practical Anti-Fuzzing Techniques With
Performance Optimization
ZHENGXIANG ZHOU AND CONG WANG (Fellow, IEEE)

Department of Computer Science, City University of Hong Kong, 518057, Hong Kong

CORRESPONDING AUTHOR: CONG WANG (e-mail: congwang@cityu.edu.hk).

This work was supported by the Research Grants Council of Hong Kong under Grants CityU 11217620, 11218521, N_CityU139/21, RFS2122-1S04, C2004-21G,
C1029-22G, R1012-21, and R6021-20F.

ABSTRACT Fuzzing, an automated software testing technique, has achieved remarkable success in recent
years, aiding developers in identifying vulnerabilities. However, fuzzing can also be exploited by attackers to
discover zero-day vulnerabilities. To counter this threat, researchers have proposed anti-fuzzing techniques,
which aim to impede the fuzzing process by slowing the program down, providing misleading coverage
feedback, and complicating data flow, etc. Unfortunately, current anti-fuzzing approaches primarily focus on
enhancing defensive capabilities while underestimating the associated overhead and manual efforts required.
In our paper, we present No-Fuzz, an efficient and practical anti-fuzzing technique. No-Fuzz stands out
in binary-only fuzzing by accurately determining running environments, effectively reducing unnecessary
fake block overhead, and replacing resource-intensive functions with lightweight arithmetic operations in
anti-hybrid techniques. We have implemented a prototype of No-Fuzz and conducted evaluations to compare
its performance against existing approaches. Our evaluations demonstrate that No-Fuzz introduces minimal
performance overhead, accounting for less than 10% of the storage cost for a single fake block. Moreover,
it achieves a significant 92.2% reduction in total storage costs compared to prior works for an equivalent
number of branch reductions. By emphasizing practicality, our study sheds light on improving anti-fuzzing
techniques for real-world deployment.

INDEX TERMS Anti-fuzzing, fuzzing, software engineering, software protection.

I. INTRODUCTION
Fuzzing, a software testing technique introduced in 1990 [29],
involves supplying a target program with randomly generated
inputs to detect program bugs by observing abnormalities
such as segmentation faults. In recent years, fuzzers have un-
dergone significant evolution, with researchers incorporating
techniques such as program instrumentation [2], [11], [32],
[33], [35], [41], [43] and program analysis [34], [37], [40] to
enhance bug-finding efficiency. Additionally, there have been
explorations of modifications to classic fuzzing mechanisms,
such as resource reallocation for specific tasks [5], [6], [8],
[9], [22], [25], [46]. These advancements have resulted in
significant successes in uncovering numerous bugs [15], [16],
[31], [35].

However, exposing bugs in a program is a double-edged
sword. On one hand, developers can identify and resolve bugs
before they propagate across the internet. On the other hand,

attackers can also exploit fuzzers to discover zero-day vulner-
abilities, leading to potential financial losses for companies.

While adversaries can manually analyze commercial soft-
ware, recent studies [18], [36] have demonstrated that attack-
ers are increasingly inclined to employ automated tools like
fuzzers to identify vulnerabilities, rather than relying solely
on manual analysis. In response to the growing challenge of
bug discovery, anti-fuzzing techniques have been proposed to
impede the malicious use of fuzzers, such as ANTIFUZZ [17]
and FUZZIFICATION [23].

The objective of anti-fuzzing is to maintain the advanta-
geous position of developers in bug-finding. These techniques
introduce penalties to disrupt fuzzing heuristics or slow down
the rate of fuzzing. The source code of the protected pro-
gram is compiled into two versions: one with anti-fuzzing
code incorporated and the other remaining unmodified. De-
velopers retain the original version for thorough testing, while

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

206 VOLUME 4, 2023

https://orcid.org/0000-0003-4365-0751
https://orcid.org/0000-0003-0547-315X

adversaries can only access the protected version, where the
anti-fuzzing code significantly hinders the effectiveness of
fuzzers. Consequently, developers are expected to discover a
significantly larger number of bugs compared to adversaries
and address them promptly to mitigate potential losses stem-
ming from zero-day vulnerabilities.

While anti-fuzzing techniques show promise, there is room
for improvement in the prototypes presented in previous
works to achieve a more fine-grained application scope. Con-
sideration of storage overhead is crucial for the practical
adoption of anti-fuzzing techniques.

In previous works, the insertion of fake blocks into the pro-
gram was used to saturate the bitmap of fuzzers. However, this
approach can significantly increase the program’s size, some-
times even several times larger than the original program. As
a result, developers may be reluctant to bear such storage
costs solely for anti-fuzzing purposes. Instead, they may opt
for lighter obfuscation tools whenever possible, despite the
fact that these tools may not offer sufficient protection against
fuzzers.

Another important factor is the automation of the tools.
Existing prototypes require manual identification of specific
code areas, and they may have dependencies on third-party
tools or libraries that could be incompatible with users’ op-
erating systems. These factors pose challenges to the future
design and implementation of anti-fuzzing techniques. Ide-
ally, anti-fuzzing techniques should possess the following two
properties:

P1) Minimization of both storage and performance overheads.
P2) Support for automation without modifying the develop-

ment procedures of the program.

Based on these considerations, we propose our solution
to anti-fuzzing techniques, which consists of two categories:
passive detection methods and active disturbance methods.
The passive detection methods are responsible for precisely
monitoring whether the protected program is being sub-
jected to fuzzing and implementing mitigation strategies once
fuzzers are detected. Our design incorporates instrumentation
checking and execution frequency checking to achieve anti-
fuzzing techniques with minimal overhead.

The active disturbance methods, on the other hand, focus
on impeding fuzzers by attacking their underlying assump-
tions and disrupting their normal operation. To optimize their
effectiveness, we refine the defective fake blocks and employ
anti-hybrid techniques. In our design, the storage overhead
associated with the fake blocks is minimized, accounting for
less than 10% of the overhead reported in previous works. Ad-
ditionally, we replace the cryptography functions utilized in
prior approaches with lightweight arithmetic functions. This
substitution enables the automatic insertion of protections into
the majority of program areas.

We have implemented these techniques in the form of a
fully automated tool called No-Fuzz. No-Fuzz seamlessly in-
corporates the anti-fuzzing techniques directly into the source
code of programs, eliminating the need for modifications
to the compilation procedures such as header files, linked

libraries, or compilation commands. This design ensures a
straightforward integration process without disrupting the ex-
isting development workflows. Furthermore, it is important
to note that No-Fuzz is compatible with other anti-fuzzing
techniques from previous works.

In our evaluation, we assess the effectiveness of our tech-
niques in reducing branch coverage using real-world software
from Binutils and two popular benchmarks: Google FTS [1]
and Magma [19]. With all techniques enabled, No-Fuzz
achieves an average reduction of 59.6% in branch coverage.
Furthermore, we demonstrate the ability of our techniques to
prevent bug findings using the LAVA-M dataset [12].

To validate our optimizations compared to prior works, we
conduct a comparison between No-Fuzz and the correspond-
ing techniques in ANTIFUZZ and FUZZIFICATION . The
results reveal that our design introduces less overhead and
effectively mitigates the negative impact of anti-fuzzing tech-
niques on regular users. Specifically, we achieve a reduction
of approximately 92.2% in storage cost compared to the prior
works for the same number of branch reductions.

Moreover, we address the challenge posed by the lack
of a suitable metric for comparing different anti-fuzzing
techniques. Existing approaches typically measure the anti-
fuzzing effects and overhead separately. However, perfor-
mance and overhead are orthogonal factors that vary based
on different configurations. It is unfair to directly compare the
performance of different works with unequal overhead. There-
fore, in addition to measuring performance and overhead
separately, we propose a novel metric called “anti-fuzzing effi-
cacy”. This metric establishes a link between the two metrics,
enabling the measurement of increased defensive capability
per unit overhead.

In summary, this paper contributes in the following ways:
1) It sheds light on the shortcomings of existing anti-

fuzzing prototypes and outlines the desirable properties
of ideal anti-fuzzing techniques.

2) It designs and implements an automated anti-fuzzing
prototype called No-Fuzz, which is capable of detecting
and disrupting run-time fuzzing mechanisms.

3) It evaluates No-Fuzz and several prior anti-fuzzing
techniques using common benchmarks, demonstrating
No-Fuzz’s minimal impact on the protected binary and
its effectiveness in impeding binary-only fuzzing.

It is important to note that a conference version of this
work was previously published [45], which did not investi-
gate anti-hybrid techniques. This extended work introduces
two novel lightweight anti-hybrid techniques that facilitate the
practical deployment of anti-fuzzing techniques. Additionally,
a more extensive set of experiments is conducted to assess the
effectiveness of No-Fuzz.

The source code for all the implemented tools is available
at https://github.com/CongGroup/No-Fuzz.

II. TECHNICAL BACKGROUND OF ANTI-FUZZING
The objective of anti-fuzzing techniques is to counteract
fuzzers and reduce the number of reported bugs in protected
binaries. These techniques can be broadly classified into three

VOLUME 4, 2023 207

https://github.com/CongGroup/No-Fuzz

ZHOU AND WANG: PRACTICAL ANTI-FUZZING TECHNIQUES WITH PERFORMANCE OPTIMIZATION

categories: anti-fast-execution, anti-feedback, and anti-hybrid
techniques, based on their impact on different fuzzing mech-
anisms. We will provide a brief overview of these techniques
in the following sections.

Anti-fast-execution: Introducing latency to the binary: One
of the underlying assumptions of fuzzers is that exploring
more paths in the binary can be achieved by executing a large
number of trials with different inputs. Fuzzers are typically
designed with acceleration techniques that feed thousands of
seeds per second into the program under test (PUT) [42]. Anti-
fast-execution techniques aim to disrupt this fast execution by
introducing latency into the binary.

EscapeFuzz [13] proposes reducing the maximum number
of executions per second as a means to introduce latency.
However, a major challenge lies in ensuring that the latency
does not adversely affect regular users. ANTIFUZZ [17] man-
ually inserts delay functions in error handling code, while
FUZZIFICATION [23] introduces latency functions in cold
blocks. Both techniques attempt to introduce delays in areas
that are seldom reached by regular users but are susceptible to
triggering fuzzers.

Anti-feedback: Disturbing the feedback information: Mod-
ern fuzzers heavily rely on two types of feedback to guide
their fuzzing heuristics: coverage-feedback and error signals.
The coverage information is stored in a bitmap of limited
size, and fuzzers make decisions on seeds and mutations to
maximize the coverage. The error signals indicate to fuzzers
the seeds that trigger bugs, which is the ultimate goal of using
fuzzers. Anti-feedback techniques aim to disrupt the feedback
mechanisms by inserting fake blocks into the protected binary.
These blocks contain code that is irrelevant to the program
logic but is recorded as valid blocks in the coverage bitmap.
By occupying a significant portion of the bitmap with these
fake blocks, fuzzers are unable to update new coverage infor-
mation.

ANTIFUZZ and VALL-NUT [26] redirect control flow to
randomly generated fake functions within the protected pro-
gram. FUZZIFICATION inserts a fixed number of constraints
and functions into the binary, creating ROP chains as fake
paths within assembly code snippets. Additionally, Fennec-
Fuzz [10] modifies the fake blocks to specifically hinder a
different coverage metric called “coverage counting,” which
is only used by TortoiseFuzz [38].

Regarding error signals, ChaffBugs [20] suggests inserting
non-exploitable bugs into the binary to confuse the segmen-
tation faults reported to fuzzers. ANTIFUZZ proposes an
approach to hinder crash discovery by installing a signal han-
dler. The handler conceals signals from fuzzers by elegantly
terminating the program, thereby preventing the detection of
crashes.

Anti-hybrid. Impeding program analysis: Hybrid fuzzers
[9], [21], [34], [40] heavily rely on techniques such as taint
analysis and symbolic execution to accelerate the fuzzing
process.

Anti-hybrid techniques aim to disrupt these program anal-
ysis techniques by introducing complex data flows into the

protected binary. The underlying idea is that program analy-
sis techniques struggle to handle intricate data flows due to
limited CPU resources.

ANTIFUZZ encrypts and decrypts the inputs and trans-
forms variables in critical comparisons into their hash values.
Similarly, FUZZIFICATION adds additional copy operations
to the operand string, complicating the data flows and mislead-
ing taint analysis engines by providing incorrect tag maps.

III. NO-FUZZ DESIGN
A. OVERVIEW OF NOFUZZ
No-Fuzz incorporates both passive detection methods and op-
timized active techniques from previous works, including fake
blocks and anti-hybrid techniques. Passive detection methods
are employed to identify whether the protected binary is being
subjected to binary-only fuzzing (BOF). Upon detecting the
presence of fuzzers, the protection triggers mitigation mecha-
nisms, such as introducing latency to impede fast execution.

As mentioned earlier, the active techniques employed in
previous works face practical limitations due to storage over-
head. To overcome this challenge, we have implemented two
key optimizations. Firstly, we optimize the fake blocks and de-
sign the landing space by leveraging the block-identification
mechanism of binary-only instrumentation. This optimization
significantly reduces the storage overhead of a fake block to
just one byte.

Secondly, we replace the heavyweight cryptography func-
tions that were used in previous anti-hybrid techniques with
lightweight infinite series. By employing this approach, we
achieve similar functionality with reduced computational
complexity. Additionally, we introduce the concept of an
input-tainted constant. This concept hampers symbolic exe-
cution by increasing the number of unsolvable variables in
constraints. These variables possess invariant values, which
have no impact on the original execution.

B. PASSIVE DETECTION METHODS
A crucial aspect of anti-fuzzing techniques is to ensure that
the inserted measures do not adversely affect regular users. It
is essential to minimize the impact on normal program execu-
tion while effectively countering fuzzing attempts. In an ideal
scenario, the protected program should have the capability
to accurately detect the presence of fuzzers, enabling us to
covertly impose severe penalties on adversaries. To achieve
this objective, we introduce passive detection methods that
allow us to identify the execution environments of protected
binaries. Once fuzzers are detected, we can activate mitigation
mechanisms such as delaying the execution or aborting the
program altogether to prevent successful fuzzing attempts.

Method 1. Detect binary-only instrumentation: In the con-
text of utilizing anti-fuzzing techniques, adversaries are un-
able to access the source code of the protected binary, as
they solely rely on the binary-only mode of fuzzers. However,
regardless of the specific techniques they employ, adversaries
must gather coverage information from the target program.

208 VOLUME 4, 2023

FIGURE 1. Instrumentation to collect coverage feedback.

Various methods, such as dynamic instrumentation, hard-
ware assistance, and binary rewriting, are commonly used to
achieve this observation. It’s important to note that all cov-
erage collection mechanisms introduce a noticeable latency,
creating a timing gap in the program under test (PUT) com-
pared to static instrumentation.

Fig. 1 illustrates the coverage mechanism of AFL-QEMU,
where the additional code within the red block introduces
additional performance overhead for a function-call branch.
By detecting the timing gap between native execution and
execution with coverage-collecting code, we can determine
the running environment.

Timing-related techniques are widely used in the field of
malware detection [3], [24], [28]. Taking inspiration from
existing research, we have developed a detection mechanism
based on binary instrumentations.

In the native execution environment (real CPU), control
flow proceeds directly to the block following a branch-taken
instruction. However, in the case of binary-only fuzzing
(BOF), the instrumented program executes additional instruc-
tions at the beginning of a block to collect coverage data. To
detect BOF, we examine the edge instructions count (EIC),
which represents the estimated number of instructions exe-
cuted when entering a function or a block (i.e., instructions
of an edge). Through experiments, we have observed that the
EIC for BOF can be approximately ten times larger than that
in native execution. By detecting this timing gap in a protected
program, we can identify the presence of BOF and proceed
with appropriate mitigation techniques.

Mitigation. Introduce latency: It is important to address
the issue of false positives in the detection process, as the
performance of CPUs can vary, leading to certain executions
having a relatively large timing gap even in the native envi-
ronment. This discrepancy often occurs during CPU context
switching, where the additional overhead is included in the
timing gap measurement. In our experiments, we found that
0.03% of executions resulted in false positives in a stable
environment, while the false-positive rate increased to 0.1%
in a busy environment with a high number of parallel tasks
being executed simultaneously.

To ensure that false positives do not adversely affect reg-
ular users, the mitigation mechanisms for fuzzing should be

implemented moderately. In our approach, we introduce a
one-second latency to the program by triggering IO block-
ing when the BOF instrumentation is detected. Although one
second may not be sufficient to significantly impact a fuzzer,
the overall effectiveness of the penalty can be guaranteed
by inserting multiple detection functions into the protected
program.

Method 2. Examining execution frequency: The nature of
fuzzing entails repeated executions of PUT within a short
period of time. This characteristic can be utilized to detect
whether the program is being fuzzed. Inspired by the proverb
“many a little makes a mickle,” we propose that if the PUT
leaves traces or vestiges after each fuzzing round, these ves-
tiges will accumulate during the rapid re-executions. Over
time, they will grow significant enough to indicate to PUT
that it is being fuzzed.

In our design, the protected program creates a temporary
file with each run. By monitoring the rate of file creation, we
can determine if a fuzzer is present. Specifically, if more than
60 files are created within a minute (the threshold is config-
urable), the program is alerted to the presence of a fuzzer.
However, managing these temporary files poses a challenge.
Traversing and identifying the files created by the protected
program can be time-consuming, and failing to delete them
can disrupt the file system for regular users.

To address this challenge, we leverage a daemon process for
the management of temporary files. A daemon process runs as
a background process, detaching itself from the parent process
and continuing to run even after the parent process terminates.
In our design, the daemon process acts as a patrolling agent
for the temporary files. It prevents unintentional deletion of
the files and deletes them after patrolling.

During execution, the patrolling daemon process detaches
itself from the protected program and creates temporary files
with sequential IDs to indicate their order. These files are
created in ascending order, with the largest order representing
the detection threshold for fuzzers. The daemon process then
locks the file for a specified period, which we refer to as the
“patrolling time.” After the patrolling period, it checks if the
locked file is correct and deletes the file it created.

Meanwhile, the protected program searches for the tem-
porary files with the threshold order during each execution.
Once the file is found, it indicates that the program has been
executed more than the threshold number of times within the
patrolling time, suggesting the likely presence of BOF. At this
point, appropriate mitigation techniques can be applied.

Mitigation. Aborting program: In contrast to the timing gap
approach, the results obtained from the daemon process are
highly accurate, with no false positives. This allows us to im-
plement a more severe penalty in this mitigation method. The
PUT has the capability to either abort the execution or trigger
an artificially inserted bug, thereby misleading fuzzers about
the occurrence of crashes. To further ensure that the mitigation
strategy does not adversely affect regular users in unexpected
scenarios, developers can configure a longer patrolling time
(e.g., 5 minutes) and a larger threshold (e.g., 1000 files). Given

VOLUME 4, 2023 209

ZHOU AND WANG: PRACTICAL ANTI-FUZZING TECHNIQUES WITH PERFORMANCE OPTIMIZATION

FIGURE 2. Function with landing space.\$iv is the immediate value, in this
example, it will be 0x90 which is the opcode for nop.

the infrequency at which regular users typically execute the
program with such high frequency, the likelihood of regular
users being affected is minimal.

C. ACTIVE METHODS: MINIMUM FAKE BLOCKS
Existing fake blocks incur a non-optimal storage cost, posing
challenges for small programs that are sensitive to high stor-
age overhead. Attackers often target small programs due to
their faster execution speed and less complex logic. As fuzzers
evolve and enhance their capabilities, such as larger bitmaps
and improved heuristics, anti-fuzzing techniques must adapt
by inserting more protection code, leading to unsustainable
storage overhead in the arms race.

To minimize the extra storage overhead of fake blocks, we
focus on the assembly level and identify unnecessary code
that contributes to the overhead. For instance, C compilers
generate function frames that are unrelated to anti-fuzzing and
can be eliminated to reduce storage costs.

Attackers rely on binary-only fuzzing (BOF) to collect
coverage feedback without access to source code. These
tools insert code before entering a new block and generate
new block records when encountering control-flow-changing
instructions. By instrumenting each function with a code seg-
ment called the “landing space,” consisting of instructions that
have no impact on normal execution, we ensure that each byte
in the landing space can be translated into a valid instruction.
We also modify the destination address of function calls to
random bytes in the landing space. When invoked, the control
flow “lands” at a random instruction, triggering the fuzzer to
record new coverage. Over multiple fuzzing rounds, the fuzzer
records a significant number of possible addresses in the
landing space, overwhelming its bitmap with corresponding
fake coverage. This approach reduces the storage cost of fake
blocks to a minimum, which is around 10% of prior works.

Fig. 2 displays the assembly code of a function and the
corresponding landing space. The original destination address
of the function is 0x40058b, and we insert the landing space
before this address in the text section, occupying the memory
region between 0x400586 and 0x40058a. By modifying the
function call (0x400586 + rand()%6), the control flow can

FIGURE 3. Jump over unnecessary blocks.

either jump to the landing space or the original start of the
function. In this example, a fuzzer will record six fake blocks,
incurring a minimal cost of six bytes.

Although the initial implementation of the landing space
appears to disrupt the coverage feedback of binary-only
fuzzing (BOF), we have identified certain limitations. Exces-
sive size of the landing space introduces noticeable latency
to the protected program. Moreover, the addresses of fake
blocks within the landing space are closely packed, leading
to higher chances of hash collisions during fuzzing. A higher
frequency of hash collisions reduces the saturation of the
fuzzer’s bitmap with fake blocks, allowing it to better identify
genuine branches in the protected program. To address these
limitations, we propose two optimizations.

Optimization 1. Jump over unnecessary instructions: When
the control flow reaches the initial bytes of the landing
space, it must execute all subsequent instructions, resulting
in significant latency for larger landing spaces. To avoid this
unnecessary execution, we modify certain one-byte instruc-
tions to short jumps, with the jump offset being the opcode of
the following instruction. As depicted in Fig. 3, if the control
flow lands at address 0x400500, the corresponding assembly
code is transformed into a two-byte short jump with an offset
of 0x36. On the other hand, if it lands at the subsequent byte
0x400501, the assembly code becomes “xor al, 0x90”. Despite
these modifications, the landing space retains its functionality
as every byte can still be correctly disassembled and recorded
as a new block. By introducing these jump instructions, the
performance overhead is reduced to about 5% for a landing
space of 1000 bytes.

Optimization 2. Spraying LandingSpace at different ad-
dresses: To decrease the occurrence of hash collisions, we
introduce multiple landing spaces distributed at different ad-
dresses. This is achieved by encapsulating functions in the
original program with intermediate blocks. As shown in
Fig. 4, these intermediate blocks solely redirect the control
flow within the protected binaries without impacting the pro-
gram execution. By intentionally creating significant address
disparities among the intermediate blocks, we increase the
likelihood of generating diverse hash values compared to
using a single landing space. Consequently, the size of the

210 VOLUME 4, 2023

FIGURE 4. Spray intermediate functions in protected binaries.

landing spaces within these functions can be reduced, as they
are now distributed among the intermediate blocks.

D. ACTIVE METHODS: ANTI-HYBRID THROUGH
LIGHTWEIGHT ARITHMETIC FUNCTIONS
Existing anti-fuzzing techniques against hybrid fuzzers are
overly restrictive. Previous works [17], [23] have suggested
complicating constraints and disrupting input taint analysis as
effective methods to prevent symbolic execution. State-of-the-
art techniques employ heavyweight cryptographic functions,
such as hash functions, to encapsulate inputs and critical com-
parisons. However, these functions produce unordered values
and are only utilized in equality comparisons. Moreover, the
substantial overhead they introduce becomes significant when
applied to a large number of functions. To disrupt taint analy-
sis, additional data flows are introduced to confuse input taint
analysis, such as duplicating the original string into a tempo-
rary string array. Similar to heavyweight wrapping functions,
the overhead from these implicit data flows accumulates as
the number of conditions requiring protection increases. Due
to these limitations, these designs are only employed in crit-
ical areas, necessitating manual effort from developers. To
promote fully automated defensive techniques, lightweight
functions and more flexible approaches are preferred in anti-
hybrid-fuzzing techniques.

Lightweight and complex constraints: To address these
challenges, we propose VariableMapping, which overwhelms
symbolic execution with lighter and comparable self-mapping
functions. While hash functions or CRC functions used in
existing approaches are complex and difficult to reverse, a
determined attacker can analyze a legal input or disassemble
the binary to obtain the correct values for hash/CRC compar-
isons. Consequently, applying such functions is unnecessary,
as their complexity only provides limited defense improve-
ment. Instead, we utilize infinite sum functions that output
the input when the number of items is sufficiently large. Vari-
ableMapping employs lighter and comparable self-mapping
functions to overwhelm symbolic execution. These functions

are much smaller than hash functions and can be controlled
by adjusting the number of items. Moreover, they effectively
impede symbolic execution engines due to the involvement of
numerous floating-point and approximate calculations.

There are numerous alternative mapping functions that can
be applied together in a protected program. We select the
Maclaurin series of 1

1−x due to its difficulty and controllabil-

ity. The function is defined as f (x) = 1
1−x = ∑N

i=0 xi (where
|x| < 1 and N is sufficiently large). This function incorporates
multiple power calculations that are difficult to solve, and its
complexity scales linearly with the number of items, allowing
for better latency control. Furthermore, the Maclaurin series
is relatively lighter than hash functions, making it suitable for
automatic application within VariableMapping. We perform
a simple static taint analysis to identify all variables that di-
rectly access the input bytes. Each variable, denoted as var, is
replaced with the mapping function f (1 − 1

var) = var, which
outputs the value var. This mapping can also be applied to
strings by mapping characters to integers. The overhead intro-
duced by a single mapping function is negligible, making the
overall overhead acceptable for covering most input-related
variables.

Another advantage of VariableMapping is that the results of
the mapping functions maintain order. Unlike hash functions
that cannot preserve input order, where larger inputs do not
necessarily result in larger hash values, VariableMapping re-
turns original values that are compatible with various types of
comparisons, including equations and inequalities.

Input-tainted constants: Symbolic execution aims to de-
termine feasible values for input-tainted variables based on
the given constraints. Solving these constraints becomes more
challenging as the number of variables increases. Leveraging
this insight, we introduce input-tainted constants, which are
invariant values derived from input bytes. One such constant is
the Kaprekar constant, but there are other alternatives to con-
sider for future defenses against evolving tools. The Kaprekar
constant is obtained by applying a series of arithmetic opera-
tions to any four-digit number, eventually converging to the
value 6174. This constant serves as a target that symbolic
execution cannot execute, effectively exploiting a weakness
in the approach. From the perspective of symbolic execution,
the Kaprekar constant behaves as an infinite loop function.
To create input-tainted constants, we randomly select some
input bytes and assemble them into a four-digit number,
such as adding them together and getting the modulo by
dividing 10000. These variables are transformed into the
Kaprekar constant and converge to 6174, becoming the input-
tainted constants. We can incorporate these constants into
any constraints within the protected program. Since calcu-
lating the Kaprekar constant converges after at most seven
iterations of the function, the overhead is negligible com-
pared to existing techniques that disrupt input-taint analysis.
Furthermore, the input-tainted constants behave as constant
values, allowing us to add them to constraints by multiplying
the constraints with Kar/6174, without affecting the original
constraints.

VOLUME 4, 2023 211

ZHOU AND WANG: PRACTICAL ANTI-FUZZING TECHNIQUES WITH PERFORMANCE OPTIMIZATION

FIGURE 5. Example of Nofuzz anti-hybrid techniques.

Fig. 5 demonstrates an example of the Nofuzz anti-hybrid
technique. The input variable input[1] is transformed into an
infinite sum using the function varmap(1-input[1]), producing
the same output as the original input[1]. Additionally, we
can multiply variables with the input-tainted constant kar.
The value of kar remains invariantly 6174, according to the
properties of the Kaprekar constant, while it can be derived
from random input bytes (such as input[3] and input[4] in the
example). Both VariableMapping and input-tainted constants
effectively impede symbolic execution while exerting mini-
mal impact on the execution of the protected program.

IV. EVALUATION
We conduct an evaluation of No-Fuzz to address the following
research questions (RQs):
� RQ 1: Can No-Fuzz effectively impede fuzzers from

exploring new branches?
� RQ 2: How successful are the anti-fuzzing techniques in

preventing fuzzers from discovering bugs?
� RQ 3: What is the storage and performance overhead

involved in deploying anti-fuzzing techniques?
� RQ 4: Which metric is suitable for comparing different

anti-fuzzing techniques?
To address RQ 1, we consider that coverage is independent

of the bug-finding capabilities of fuzzers [7]. A fuzzer’s ability
to cover more code paths increases the likelihood of finding
bugs within the target program. We evaluate the reduction
in coverage on real-world binaries after applying No-Fuzz,

demonstrating the effectiveness of anti-fuzzing techniques as
a defense mechanism.

To investigate RQ 2, we evaluate the anti-fuzzing tech-
niques using the LAVA-M benchmark [12], measuring the
shortest time required to discover a bug. The benchmark
includes four flawed binaries (base64, md5sum, who,
uniq) with artificially inserted bugs ranging from dozens to
thousands.

Both RQ 3 and RQ 4 pertain to the evaluation of overhead
associated with anti-fuzzing techniques. For RQ 3, we assess
the storage and performance overhead on real-world programs
of varying sizes. Regarding RQ 4, we address concerns that
the overhead alone is insufficient for the comprehensive eval-
uation of anti-fuzzing techniques. Increasing the amount of
defensive code added to the protected programs is likely to
increase the overhead. The defensive capability of a technique
is distinct from the additional overhead, as the more defensive
code is inserted into the protected binary, the safer it be-
comes. Thus, a single metric (anti-fuzzing effect or overhead)
is inadequate for assessing a defensive technique. We propose
combining these two metrics and unifying the evaluation cri-
teria by measuring the defensive ability relative to the unit
cost of storage or execution rate. We introduce a new metric
called anti-fuzzing efficacy, which measures the number of
reduced branches per byte of additional storage cost and per
millisecond of latency. This metric evaluates the capability of
anti-fuzzing techniques in relation to the introduced overhead.

Throughout the experiments, the latency mitigation is set
to one second, with the daemon process patrolling for one
minute and issuing an alert if the number of executions ex-
ceeds 60 times. The landing space is configured to occupy
100 bytes, and the functions are wrapped in 50 intermediate
functions. AFL and AFL-based fuzzers (AFLFast and QSYM)
utilize AFL-QEMU. HonggFuzz supports both Intel-PT and
QEMU, and we employ binary-only modes for both. Each
fuzzing campaign runs on three CPU cores. Notably, QSYM
operates two AFL instances with two CPU cores and an SMT
solver using one core. Fuzzing campaigns on the LAVA-M
dataset run for 48 hours, while others run for 24 hours. Due to
the non-deterministic nature of fuzzing behaviors, we repeat
each fuzzer x target combination ten times.

A. REDUCING CODE COVERAGE
We assessed the branch coverage of five fuzzers on 12 real-
world binaries obtained from Binutils, Magma, and Google
FTS. Fig. 6 displays the average number of covered branches
by each fuzzer, both with and without No-Fuzz protection. We
conducted separate evaluations for each technique to avoid
one technique masking the effects of others. The combined
application of all No-Fuzz techniques significantly impedes
the branch exploration of fuzzers. On average, fuzzers can
only discover 40.4% of the expected branches, most of which
pertain to initializations and input correctness checks.

A single passive detection technique reduces branch cov-
erage by 19.7% to 85.1%. The variation in effectiveness is
influenced by the choice of mitigation techniques and the

212 VOLUME 4, 2023

FIGURE 6. Branch covered by four fuzzers against twelve binaries with and without different protections. The techniques are Timing Gap, Daemon
Process, Landing Space, and Anti-Hybrid. The fuzzers are AFL, AFLFast, Honggfuzz-QEMU,Honggfuzz-PT, and QSYM .

differences among fuzzers. As depicted in the results, aborting
the PUT (represented by the purple column) is more effective
than introducing latency (represented by the gray columns) to
the protected programs. However, introducing latency has a
slightly lesser impact on users compared to program abortion.
This trade-off between effectiveness and user impact prevents
us from concluding that one mitigation technique outper-
forms the others. Our recommendation is to employ more
severe mitigation techniques with more precise detection
techniques.

The landing space obstructs an average of 27.9% of the
branches. It is less effective than passive detection methods
because the penalty for fuzzers is limited to bitmap saturation,
allowing fuzzers to continue running normally. Anti-hybrid
techniques exhibit effectiveness against QSYM, reducing cov-
erage by 23.2%. However, their impact on other fuzzers
is limited. The reduction in coverage of traditional fuzzers
against anti-hybrid techniques can be attributed to the latency
introduced by the protection.

B. PREVENTING FUZZERS FROM FINDING BUGS
LAVA-M benchmark: Despite recent works suggesting the
use of up-to-date benchmarks such as the Google fuzzer
test suite [1], Magma [19], UNIFUZZ [27], and FIXRE-
VERTER [44] for bug-finding experiments, we find them
unsuitable for evaluating BOF techniques. The issue arises
because some of these benchmarks rely on sanitizers, which
most BOF techniques do not support. While there are works
like QEMU-AddressSanitizer [14] that try to facilitate this

field, our evaluation covers different BOF techniques, not all
of which have complementary tools. Furthermore, these new
benchmarks pose higher difficulty in bug discovery, and the
efficiency of BOF significantly degrades compared to static
instrumentation, with a performance of only a quarter of the
latter. This makes it challenging to assess anti-fuzzing tech-
niques against BOF in these benchmarks, especially when the
number of bugs originally found by BOF is limited. Due to
these restrictions, we chose to use the LAVA-M benchmark,
where bugs directly trigger segmentation faults and are easily
discovered by BOF.

Even though the LAVA-M benchmark contains thousands
of bugs, BOF techniques can only uncover a few unique
bugs per buggy binary. Counting the number of bugs found
becomes insignificant, despite being considered the ground
truth for fuzzer evaluation. Instead, we measure the time it
takes for fuzzers to find the first bug in each buggy binary
within 48 hours. This metric better illustrates the bug-finding
capabilities of BOF in the LAVA-M benchmark.

Results: Table 1 presents the average time taken by five
fuzzers to find a single bug in the LAVA-M benchmark. From
the table, we observe that all fuzzers can find at least one bug
in the unprotected programs within 48 hours. Notably, QSYM
finds the bug in just a few minutes, much faster than other
fuzzers. This can be attributed to the design of the LAVA-
M benchmark. The bugs in LAVA-M are based on integer
comparisons, and if an input bypasses the comparison, the cor-
responding bug is triggered. This mechanism benefits fuzzers
capable of solving constraints, explaining why QSYM, as a

VOLUME 4, 2023 213

ZHOU AND WANG: PRACTICAL ANTI-FUZZING TECHNIQUES WITH PERFORMANCE OPTIMIZATION

TABLE 1. Time of Fuzzers to Find a Bug in Native and Protected LAVA-M. �
Means the Fuzzing Campaign Fails to Find a Bug Within 48 Hours

hybrid fuzzer with symbolic execution capabilities, outper-
forms other mutational fuzzers.

On the other hand, when anti-fuzzing defenses are applied,
some fuzzing campaigns exceed the 48-hour time limit with-
out finding any bugs. The remaining campaigns uncover bugs,
but it takes significantly more time compared to the corre-
sponding unprotected programs.

Notably, we found that Honggfuzz is incompatible with
the md5sum target in LAVA-M, as it mistakenly considers
handled errors as crash signals. HonggFuzz generates millions
of false positive crash seed files, making it challenging to
identify the correct crash seeds from such a large pool. As a
result, we had to discard this combination of fuzzer and target.

In general, passive detection techniques and the landing
space successfully impede all fuzzing campaigns, as the time
taken to find a bug increases after applying these techniques.
Similar to RQ 1, the anti-hybrid technique only hampers hy-
brid fuzzing and has no impact on mutational fuzzers. When
all anti-fuzzing techniques in No-Fuzz are applied, none of the
fuzzing campaigns can find a bug. The evaluation confirms the
effectiveness of No-Fuzz in preventing different fuzzers from
discovering bugs in protected programs.

C. PERFORMANCE & STORAGE OVERHEAD OF NO-FUZZ
We were inspired by the observation that the size of input files
can impact the performance overhead accordingly. Generally,
larger inputs invoke more functions and take longer to process.
To ensure fairness, we prepared two sets of input files. One set
contains small invalid files that quickly trigger errors in the
programs, while the other set consists of valid samples of dif-
ferent sizes to trigger normal functionalities. The evaluation
results consider the average execution time with both sets of
input samples. Additionally, we considered that the overhead
would be less significant for large and complex programs.

Therefore, we categorized the programs into two groups based
on their size and average execution time to mitigate bias in
the evaluations. The evaluation results of each group will be
analyzed separately.

Performance overhead: According to Table 2, passive
detection techniques result in approximately 10-20% perfor-
mance overhead for small binaries and less than 1% for large
binaries. Despite the relatively large overhead for small pro-
grams, the absolute latency is only around 5 ms, which regular
users typically won’t notice. Timing gap detection introduces
slightly more latency than the daemon process, likely due to
false positives. Similarly, the landing space and anti-hybrid
techniques introduce overhead proportional to the size and
complexity of the programs. Small programs experience a
40.9-55.3% increase in latency, while for large programs, the
proportion decreases to around 2%. The overall overhead is
130.0% for small programs and 3.7% for large programs.

Storage overhead: From Table 2, passive detection tech-
niques consume storage ranging from about 1 KB to 50 KB
(10 KB on average), but they are all less than 1% of the
original size of the protected programs. The landing space
inserts fake blocks based on the number of functions in
the protected binary. Consequently, the overhead decreases
with fewer functions in the original program, ranging from
0.3 MB to 1 MB (0.8 MB on average) for different programs.
Anti-hybrid techniques contribute to storage overhead from
0.04 MB to 0.86 MB, which accounts for only 2.1% of the
small program sets and a negligible 0.8% for large programs.
The overall storage overhead is around 1.1 MB for small pro-
grams and 3.1 MB for large programs. Despite the relatively
high overall performance and storage overhead for small pro-
grams, it is unnecessary to enable all anti-fuzzing techniques
in real-world scenarios. For consideration of overhead, we
suggest small programs only adopt the lightweight passive
detection methods.

Comparisons with prior works: To demonstrate the value
of the landing space, we evaluate existing anti-coverage tech-
niques from previous works. The default configurations of
ANTIFUZZ and FUZZIFICATION involve a fixed number of
fake blocks, resulting in stable storage overhead of 20 MB
and 1.2 MB, respectively. The storage advantage of No-Fuzz
is more pronounced for small binaries, as they have fewer fake
blocks. It is worth noting that the storage overhead of FUZZI-
FICATION is significantly smaller than that of ANTIFUZZ.
However, our experiments reveal that the default configuration
of FUZZIFICATION is insufficient to saturate the fuzzers’
bitmaps. Thus, the actual storage overhead of the effective
configuration of FUZZIFICATION should be even larger than
the current 1.2 MB.

D. ANTI-FUZZING EFFICACY
To assess the effectiveness of different anti-fuzzing
techniques, we introduce a new metric called “anti-fuzzing
efficacy.” This metric quantifies the relationship between
the anti-fuzzing effects (coverage reduction) and the
associated storage and performance overhead. As anti-fuzzing

214 VOLUME 4, 2023

TABLE 2. Overhead(CPU) of No-Fuzz and Anti-Coverage Techniques of ANTIFUZZ and FUZZIFICATION on Real-World Programs

TABLE 3. Space and Performance Efficacy of Different Anti-Fuzzing
Techniques Against Four Fuzzers

techniques enhance the defensive capability by inserting
additional code into protected programs, a larger amount
of defensive code promises more effective defense. An
ideal anti-fuzzing technique should introduce minimal
overhead while maintaining a high level of defensive
capability. Therefore, evaluating the defense capability
per unit storage/performance cost provides a better measure
of the anti-fuzzing effects. Specifically, we calculate the
efficacy by dividing the number of coverage reductions by the
amount of defensive code per kilobyte and the reduction in
latency per millisecond. As a reference, we also calculate the
efficacy of ANTIFUZZ and FUZZIFICATION .

Table 3 demonstrates that passive detection techniques
exhibit the highest performance and storage anti-fuzzing
efficacy. These techniques are the most cost-effective in coun-
tering BOF. Moreover, since fixed defensive code is inserted
into the protected programs, the efficacy remains relatively
stable across all evaluated programs, with similar orders of
magnitude.

The performance efficacy of the landing space is approx-
imately 15–48% compared to passive detection techniques,
while the storage efficacy is less than 1% of the passive de-
tection methods. Despite the lower efficiency of the landing
space, it can serve as a complementary technique to passive
detection. Similarly, the efficacy of Anti-hybrid techniques is
only significant for hybrid fuzzers and is less effective com-
pared to other techniques. However, as discussed in Section V,
relying on a single defensive technique can be weak against

adversaries, making it worthwhile to deploy different tech-
niques if the overhead is manageable.

For reference, we evaluate the anti-coverage techniques of
ANTIFUZZ and FUZZIFICATION . The performance effi-
cacy of the landing space is similar to that of ANTIFUZZ,
while FUZZIFICATION is less efficient due to the insufficient
number of blocks. Regarding storage efficacy, the landing
space outperforms these anti-coverage techniques by 10–20
times, resulting in an average reduction of approximately
92.2% in storage cost. This demonstrates that No-Fuzz is a
more practical approach, effectively utilizing storage while
providing adequate anti-fuzzing protection.

V. DISCUSSION
While our design has demonstrated effective and efficient
performance, there is room for further improvement. We view
our design as a complement to prior works and recognize
the value of certain designs in those works that should be
considered for future development of anti-fuzzing tools, such
as the installation of a signal handler to conceal crashes.

These concerns will be elaborated on in our discussion.
In the subsequent sections, we will delve into the robustness
of anti-fuzzing techniques and highlight the advantages they
offer over obfuscation. This is important due to the potential
inherent issues (i.e., robustness) and the possibility that obfus-
cation techniques may serve as substitutes in certain scenarios.

Robustness of anti-fuzzing techniques: A key concern re-
garding anti-fuzzing is its robustness in the face of determined
attackers. When the details of the defense mechanism are
known, skilled attackers can conduct manual analysis to cir-
cumvent it. Prior works have suggested using obfuscation
techniques as a countermeasure against reverse engineering.
However, even obfuscation techniques can be thwarted by
experienced attackers. There is a debate regarding the neces-
sity of making anti-fuzzing techniques robust against manual
analysis, it may not be essential to specifically address this
aspect of robustness.

Anti-fuzzing techniques aim to introduce additional obsta-
cles (such as time, resources, and knowledge) that adversaries
must overcome when attempting to fuzz a protected pro-
gram. These techniques are particularly effective in defending
against large-scale untargeted fuzzing tasks, which do not
warrant the manual analysis of individual binaries for attack-
ers. Furthermore, anti-fuzzing techniques raise the bar for
successful BOF by necessitating an understanding of both

VOLUME 4, 2023 215

ZHOU AND WANG: PRACTICAL ANTI-FUZZING TECHNIQUES WITH PERFORMANCE OPTIMIZATION

anti-fuzzing and reverse-engineering techniques. The defen-
sive measures can also decrease the likelihood of protected
binaries being selected as targets for BOF. Given the afore-
mentioned reasons, we assert that the ultimate purpose of
anti-fuzzing techniques is not undermined by reverse engi-
neering.

Anti-fuzzing or obfuscation: Obfuscation has been con-
sidered as a potential solution to anti-fuzzing, as it is a
well-developed technique with strong community support.
However, prior works have conducted experiments that ques-
tion the effectiveness of obfuscation in anti-fuzzing [17], [23].
We aim to revisit their arguments and provide additional ex-
periments to demonstrate that obfuscation techniques can be
effective in certain cases.

Interestingly, there are already obfuscation techniques de-
signed specifically to counter symbolic executions, similar
to anti-hybrid techniques [4], [39]. Furthermore, obfusca-
tion techniques that involve self-modifying code can be
particularly powerful against BOF. Self-modifying code is
commonly used in packing and encryption, allowing the reuse
of memory space by overwriting existing opcodes with new
instructions.

However, a challenge arises when multiple functions are
overwritten within a self-modifying block, as they share the
same memory address. Most fuzzers rely on hashing func-
tion block addresses, causing the overwritten functions to
be identified as a single function. As a result, the coverage
information of the overwritten functions is lost.

We conducted experiments using BOF on dummy programs
protected by self-modifying code. The results demonstrate
that BOF cannot be successfully performed on programs with
self-modifying code. Additionally, a study by Raffetseder
et al. [30] highlights that self-modifying code significantly
slows down translations in emulators. This further confirms
the anti-fuzzing effectiveness of obfuscation against BOF,
as observed with tools like afl-qemu and honggfuzz-
qemu.

Fortunately, self-modifying code is not commonly em-
ployed by developers. Commercial software rarely utilizes
self-modifying code due to the risk of false positives as ma-
licious attempts and the introduction of new bugs through
risky modifications. In summary, anti-fuzzing techniques ad-
dress the limitations of static obfuscation techniques against
fuzzers. We argue that future anti-fuzzing research should
focus on static techniques without relying on self-modifying
code.

VI. CONCLUSION
This paper presents the design and implementation of No-
Fuzz, a prototype tool that integrates practical and fully
automated anti-fuzzing techniques. We optimize storage by
inserting fake blocks at a granular level, reducing unrealistic
requirements. We enhance computational efficiency by using
a lightweight wrapping function and input-tainted constants,
reducing manual efforts compared to previous methods. Ad-
ditionally, we introduce passive detection methods to identify

execution environments and apply mitigation techniques for
binary-only fuzzing.

Our evaluations demonstrate that No-Fuzz significantly re-
duces fuzzers’ branch coverage and hinders bug discovery in
the LAVA-M dataset. We propose the “anti-fuzzing efficacy”
metric, showing that No-Fuzz provides equal or higher protec-
tion with lower overhead compared to previous approaches.
Notably, our solution achieves an impressive average reduc-
tion in storage cost of 92.2% compared to prior works. In
summary, we emphasize the importance of minimizing over-
head and embracing automation in the anti-fuzzing domain.
By doing so, we pave the way for more practical and effective
techniques and aspire to inspire further progress in this field.

REFERENCES
[1] “Google fuzzer test suite,” Accessed: Mar. 12, 2022. [Online]. Avail-

able: https://github.com/google/fuzzer-test-suite
[2] “A library for coverage-guided fuzz testing,” Accessed: Oct. 23, 2020.

[Online]. Available: https://llvm.org/docs/LibFuzzer.html
[3] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and

G. Vigna, “Efficient detection of split personalities in malware,” in Proc.
Netw. Distrib. Syst. Secur., 2010, pp. 1–16.

[4] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proc. Annu.
Conf. Comput. Secur. Appl., 2016, pp. 189–200.

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as Markov chain,” in Proc. ACM Conf. Comput. Commun.
Secur., 2016, pp. 1032–1043.

[6] M. Böhme et al., “Directed greybox fuzzing,” in Proc. ACM Conf.
Comput. Commun. Secur., 2017, pp. 2329–2344.

[7] M. Böhme, L. Szekeres, and J. Metzman, “On the reliability of
coverage-based fuzzer benchmarking,” in Proc. 44th Int. Conf. Softw.
Eng., 2022, pp. 1621–1633.

[8] H. Chen et al., “Hawkeye: Towards a desired directed grey-box fuzzer,”
in Proc. ACM Conf. Comput. Commun. Secur., 2018, pp. 2095–2108.

[9] Y. Chen et al., “SAVIOR: Towards bug-driven hybrid testing,” in Proc.
IEEE Symp. Secur. Privacy, 2020, pp. 1580–1596.

[10] A. Dewitz and W. Olofsson, “The hare, the tortoise and the fox: Extend-
ing anti-fuzzing,” M.S. thesis, Blekinge Inst. Technol., 2022.

[11] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically
instrumenting COTS binaries for fuzzing and sanitization,” in Proc.
IEEE Symp. Secur. Privacy, 2020, pp. 1497–1511.

[12] B. Dolan-Gavitt et al., “LAVA: Large-scale automated vulnerability
addition,” in Proc. IEEE Symp. Secur. Privacy, 2016, pp. 110–121.

[13] E. Edholm and D. Göransson, “Escaping the fuzz-evaluating fuzzing
techniques and fooling them with anti-fuzzing,” 2016.

[14] A. Fioraldi, D. C. D’Elia, and L. Querzoni, “Fuzzing binaries for mem-
ory safety errors with QASan,” in Proc. IEEE Secure Develop. Conf.,
2020, pp. 23–30.

[15] Google, “A scalable fuzzing infrastructure,” Accessed: Oct. 23, 2020.
[Online]. Available: https://github.com/google/clusterfuzz

[16] Google, “Syzkaller found bugs - Linux kernel,” Accessed: Oct.
23, 2020. [Online]. Available: https://github.com/google/syzkaller/blob/
master/docs/linux/found_bugs.md

[17] E. Güler, C. Aschermann, A. Abbasi, and T. Holz, “Antifuzz: Impeding
fuzzing audits of binary executables,” in Proc. USENIX Secur., 2019,
pp. 1931–1947.

[18] M. Hafiz and M. Fang, “Game of detections: How are security vul-
nerabilities discovered in the wild?,” Empirical Softw. Eng., vol. 21,
pp. 1920–1959, 2015.

[19] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth
fuzzing benchmark,” in Proc. ACM Meas. Anal. Comput. Syst., 2020,
pp. 1–29.

[20] Z. Hu, Y. Hu, and B. Dolan-Gavitt, “Chaff bugs: Deterring attackers by
making software buggier,” 2018, arXiv:1808.00659.

[21] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” in Proc. IEEE Symp.
Secur. Privacy, 2020, pp. 1613–1627.

216 VOLUME 4, 2023

https://github.com/google/fuzzer-test-suite
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/clusterfuzz
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md

[22] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang, “BEACON:
Directed grey-box fuzzing with provable path pruning,” in Proc. IEEE
Symp. Secur. Privacy, 2022, pp. 36–50.

[23] J. Jung, H. Hu, D. Solodukhin, D. Pagan, K. H. Lee, and T. Kim, “Fuzzi-
fication: Anti-fuzzing techniques,” in Proc. USENIX Secur., 2019,
pp. 1913–1930.

[24] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song, “Emulating
emulation-resistant malware,” in Proc. ACM Workshop Virtual Mach.
Secur., 2009, pp. 11–22.

[25] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proc. ACM/IEEE Int.
Conf. Automated Softw. Eng., 2018, pp. 475–485.

[26] Y. Li et al., “Vall-nut: Principled anti-grey box - fuzzing,” in Proc. IEEE
Int. Symp. Softw. Rel. Eng., 2021, pp. 288–299.

[27] Y. Li et al., “UNIFUZZ: A holistic and pragmatic metrics-driven plat-
form for evaluating fuzzers,” in Proc. USENIX Secur., 2021, pp. 2777–
2794.

[28] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in Proc. Int. Workshop Recent Adv.
Intrusion Detection, 2011, pp. 338–357.

[29] P. Barton, L. M. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, pp. 32–44, 1990.

[30] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in Proc. Int. Conf. Inf. Secur., 2007, pp. 1–18.

[31] M. Rash, “A collection of vulnerabilities discovered by the AFL
fuzzer,” Accessed: Sep. 13, 2020. [Online]. Available: https://github.
com/mrash/afl-cve

[32] S. Rawat, V. Jain, A. J. S. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proc. Netw. Dis-
trib. Syst. Secur., 2017, pp. 1–14.

[33] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-assisted feedback fuzzing for OS kernels,” in Proc.
USENIX Secur., 2017, pp. 167–182.

[34] N. Stephens et al., “Driller: Augmenting fuzzing through selective sym-
bolic execution,” in Proc. Netw. Distrib. Syst. Secur., 2016, pp. 1–16.

[35] R. Swiecki, “Honggfuzz,” 2020. Accessed: Aug. 14, 2023. [Online].
Available: https://github.com/google/honggfuzz

[36] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and M. Mazurek, “Hackers
vs. testers: A comparison of software vulnerability discovery pro-
cesses,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 374–391.

[37] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
Proc. IEEE Symp. Secur. Privacy, 2010, pp. 497–512.

[38] Y. Wang et al., “Not all coverage measurements are equal: Fuzzing by
coverage accounting for input prioritization,” in Proc. Netw. Distrib.
Syst. Secur., 2020, pp. 1–17.

[39] Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to combat
symbolic execution,” in Proc. 16th Eur. Symp. Res. Comput. Secur.,
2011, pp. 210–226.

[40] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical
concolic execution engine tailored for hybrid fuzzing,” in Proc. USENIX
Secur., 2018, pp. 745–761.

[41] M. Zalewski, “American fuzzy lop,” 2019. Accessed: Aug. 14, 2023.
[Online]. Available: http://lcamtuf.coredump.cx/afl

[42] M. Zalewski, “Technical ‘whitepaper’ for afl-fuzz,” 2019. Accessed:
Aug. 14, 2023. [Online]. Available: http://lcamtuf.coredump.cx/afl/
technical_details.txt

[43] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “StochFuzz:
Sound and cost-effective fuzzing of stripped binaries by incremental
and stochastic rewriting,” in Proc. IEEE Symp. Secur. Privacy, 2021,
pp. 659–676.

[44] Z. Zhang, Z. Patterson, M. Hicks, and S. Wei, “FIXREVERTER: A
realistic bug injection methodology for benchmarking fuzz testing,” in
Proc. USENIX Secur., 2022, pp. 3699–3715.

[45] Z. Zhou, C. Wang, and Q. Zhao, “No-fuzz: Efficient anti-fuzzing tech-
niques,” in Proc. Secur. Privacy Commun. Netw., 2023, pp. 731–751.

[46] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, “FuzzGuard:
Filtering out unreachable inputs in directed grey-box fuzzing through
deep learning,” in Proc. USENIX Secur., 2020, pp. 2255–2269.

ZHENGXIANG ZHOU received the BE degree in
computer science and technology from The Chi-
nese University of Hong Kong, Shenzhen, China,
in 2019. He is currently working toward the Ph.D.
degree with the Department of Computer Science
with the City University of Hong Kong, Hong
Kong. His research interests include fuzzing and
software engineering.

CONG WANG (Fellow, IEEE) is currently a Pro-
fessor with the Department of Computer Science,
City University of Hong Kong, Hong Kong. His
research interests include data and network se-
curity, blockchain and decentralized applications,
and privacy-enhancing technologies. He was a co-
recipient of the IEEE INFOCOM Test of Time
Paper Award 2020, the Best Paper Award of IEEE
ICDCS 2020, ICPADS 2018, and MSN 2015, Best
Student Paper Award of IEEE ICDCS 2017, Out-
standing Researcher Award in 2019, Outstanding

Supervisor Award in 2017, and the President’s Awards with the City Univer-
sity of Hong Kong in 2016 and 2019, respectively. He is a Founding Member
of the Young Academy of Sciences of Hong Kong and a Research Fellow
of the Hong Kong Research Grants Council. He is the Editor-In-Chief of the
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING .

VOLUME 4, 2023 217

https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/google/honggfuzz
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

