ImplicitPCA: Implicitly-proxied parametric encoding for collision-aware garment reconstruction

Lan Chen, Jie Yang, Hongbo Fu, Xiaoxu Meng, Weikai Chen, Bo Yang, Lin Gao

A B S T R A C T

The emerging remote collaboration in a virtual environment calls for quickly generating high-fidelity 3D humans with cloth from a single image. To estimate clothing geometry and topology, parametric models are widely used but often lack details. Alternative approaches based on implicit functions can generate accurate details but are limited to closed surfaces and may not produce physically correct reconstructions, such as collision-free human avatars. To solve these problems, we present ImplicitPCA, a framework for high-fidelity single-view garment reconstruction that bridges the good ends of explicit and implicit representations. The key is a parametric SDF network that closely couples parametric encoding with implicit functions and thus enjoys the fine details brought by implicit reconstruction while maintaining correct topology with open surfaces. We further introduce a collision-aware regression network to ensure the physical correctness of cloth and human.

During inference, an iterative routine is applied to an input image with 2D garment landmarks to obtain optimal parameters by aligning the cloth mesh projection with the 2D landmarks and fitting the parametric implicit fields with the reconstructed cloth SDF. The experiments on the public dataset and in-the-wild images demonstrate that our result outperforms the prior works, reconstructing detailed, topology-correct 3D garments while avoiding garment-body collisions.

1. Introduction

Remote and distributed collaboration has become increasingly prevailing nowadays, following the global impact of Covid-19 pandemic and the surge of the metaverse. Among all the needs of digitizing our real world, clothed human models with high-fidelity and physically plausible details are the most demanding assets in establishing a life-like virtual environment. While the undressed human is relatively easy to model due to their consistent topology, reconstructing 3D garments is much more challenging as they typically contain rich geometry details, e.g., clothing folds, and can have large variations of styles and topologies.

Various solutions have attempted to address the challenging problem of monocular garment reconstruction. Parametric methods [1,2] represent a deformed garment in a human-driven manner, relying on the pose and shape of the underlying body. Clothing databases [1,3] are often constructed by offline physical simulation or 3D scanning. These approaches [2,4] can generate a garment model with similar global deformation to the image but are difficult to obtain fine-grained details.

An alternative line of research [5–7] is to directly construct a pixel-aligned implicit field of clothed human from an input image. Such methods are difficult to obtain garments with reasonable structures and control the generation explicitly. For instance, methods based on signed distance fields (SDFs) [5,6,8] can only generate closed watertight surfaces. Implicit-based network [7] using unsigned distance fields are able to reconstruct open surfaces but could introduce additional artifacts when reconstructing mesh from the generated point clouds.

To tackle these limitations, we present ImplicitPCA, a hybrid framework that connects the good ends of both explicit mesh and implicit functions while being able to achieve physically plausible reconstructions. The core of our framework is a proposed parametric SDF network (PSDF Net) that bridges the PCA encoding of a parametric model and the implicit representation of high-fidelity reconstruction. To achieve this goal, we introduce two implicit modules: human SDF net and garment SDF net, which infer the occupancy field of the undressed human and 3D garment respectively from a single image. After these three modules are separately trained in a supervised manner, we leverage their representational advantages by closely coupling them in a novel optimization scheme at test time. In particular, to ensure the PSDF Net can generate a parametric mesh with high-quality geometric...
ment mesh depending on the pose and shape of the underlying human
be used to reconstruct the human and cloth and can be divided into
PCA [15,16], some parametric garment representations can generally
focusing on the learning of deformation representation [9–14]. Since
mation to describe the detailed geometry, there are many researches
nature. And the garment and human contain more complex defor-
age is very challenging and requires geometry priors due to the ill-posed
Parametric models.
Garment and human digitization from a single im-
methods [2,4,7] in terms of physic plausibility and the quality of
reconstruction.
In summary, our key contributions are the following three folds:
• For the realistic/flexible open garment surface reconstruction and
generation, we introduce a hybrid parametric framework for
3D garment reconstruction, which can not only tightly collabo-
rate explicit meshes and implicit fields but also jointly optimize
the explicit garment meshes and implicit fields with the PCA
parameters.
• We propose a novel collision-aware regress scheme for avoiding
the collision, which is able to efficiently detect and optimize the
cloth and body geometry in a differentiable fashion.
• We obtain state-of-the-art results on garment reconstruction from
single images on the public benchmark MGN [1] and in-the-wild
images in quantitative and qualitative evaluations.

2. Related work

Parametric models. Garment and human digitization from a single im-
age is very challenging and requires geometry priors due to the ill-posed
nature. And the garment and human contain more complex defor-
mation to describe the detailed geometry, there are many researches
focusing on the learning of deformation representation [9–14]. Since
human and garment geometry is shown to be well reconstructed by
PCA [15,16], some parametric garment representations can generally
be used to reconstruct the human and cloth and can be divided into
human-based and garment-based methods.

Human-based models [2,17,18] represent the deformation of a gar-
ment mesh depending on the pose and shape of the underlying human
body statistical models [15,19,20]. BCNet [2] introduces a layered
garment on top of the SMPL model [15], as well as a set of learned
skinning weights to improve the garment deformation. CAPE [18] uses
a conditional Mesh-VAE-GAN with a mesh patch discriminator, to dress
SMPL bodies with pose-dependent displacement cloth layers. Santeste-
ban et al. [17] presents a data-driven framework that learns from
the offline simulation to enable efficient virtual try-on with 250 fps.
However, since the deformation of cloth heavily depends on the human
shape and pose, these methods are able to generate the deformation of
tight cloth, instead of loose cloth.

On the other hand, garment-based parametric methods [1,3,4] widely utilize the coarse-to-fine strategy to predict body shape and
garment geometry jointly. For example, Bhatnagar et al. [1] present
Multi-Garment Net (MGN), which predicts the global deformation and
the detail displacement via two disentangled PCA coefficients of the
pre-defined garment parametric models. Combining both human-based
and garment-based methods, TailorNet [3] jointly learns a neural
model, which achieves the detailed prediction of cloth by controlling
the pose, shape, and style of template-based garments. Furthermore, to
achieve a template-free method, SMPLicit [4] uses a parametric implicit
function network with unsigned distance fields for garment generation
with flexible topology. Parametric models provide well-defined geo-
metry priors for garment reconstruction/generation. However, it is very
challenging to reconstruct realistic and fine-grained garment details
that are aligned with input images.

Neural implicit methods. The implicit representation has a great success
in 3D shape representation and generation due to its flexible topology.
For types of implicit functions, there are two main streams: binary
signed distance function (SDF) [5,21–26] and continuous SDF [27–31]
for closed surfaces, and unsigned distance function (UDF) [7,32–34] for
arbitrary shapes.

By using SDF for clothed human reconstruction, Saito et al. pro-
posed PIFu [5] and PIFuHD [6], which are able to digitize highly
detailed clothed humans with highly intricate shapes, hairstyles, and
textures in a unified way. The higher-fidelity performance is further
raised by the higher resolution of input images and extra normal maps.
Meanwhile, ARCH [35] learns a semantic deformation field using the
parametric 3D body estimator to represent arbitrary shapes, but this
method requires a body mesh as input, and is thus challenging to
extend to garments with multiple components. Geo-PIFu [36] extends
PIFu [5] by utilizing 3D information from a latent voxel representation
to enrich the feature representation for a high-resolution reconstruc-
tion. However, Geo-PIFu is computationally intensive for both training
and testing due to its adopted volume representation.

UDF is a powerful tool for cloth human reconstruction due to its
ability to represent high-quality open surfaces. The pioneering works
NDF [32] and DUDE [33] use neural networks to predict unsigned

Fig. 1. Taking a single-view image as input, the first row shows the reconstructed garments by BCNet [2], PIFu [5] and our hybridPCA; the second row shows our inference from three other views. Our approach achieves high-fidelity details and avoids collisions with bodies.
distance fields to represent arbitrary surfaces without any closed surface data. They leverage the multi-scale techniques [32,37] and normal vector field prediction [33] to enhance surface details. However, it is nontrivial and challenging to predict UDFs from an ambiguous 2D image for garment reconstruction, due to the lack of 3D space information. Different from the above approaches, AnchorUDF [7] optimizes the gradient direction of UDF via the extra set of 3D anchor points to obtain strong 3D context information for the distance fields.

Recently, there are some works focusing on novel 3D open surface representations, e.g., 3PSDF [38], WNF [39], HSDF [40]. Their tasks are reconstructing open surfaces with arbitrary topologies from sparse point clouds. As an application of 3PSDF [38], they show an example of reconstructed garments from a single-view image in T pose, while our method focuses on various garment reconstruction tasks. The garments are often open surfaces but limited categories, and the topology is more restricted. Thus, a method that relies on both explicit parametric models and implicit fields can fit two good ends. Zhu et al. proposed an approach, called ReEF [41], to register a template mesh to semantic, shape, and boundary implicit fields predicted from an image by an optimization scheme. This method requires annotated datasets, well initialization, and highly-correct correspondence for registration. Instead, we propose a hybrid representation that jointly collaborates the parametric models and flexible implicit fields via PCA parameters to predict layered 3D clothed human reconstruction with high fidelity. Another important difference between our approach and the aforementioned methods is that the latter focuses only on cloth human reconstruction while our approach achieves a parameterized generation of clothed human via the PCA coefficients.

Body-garment collision detection & response. Despite the great success of the above methods, all data-driven approaches have a critical weakness in handling body-garment collisions. Most methods [3,42–44] commonly design additional loss terms to avoid and penalize geometric garment-body penetrations at training time, but such methods require extensive post-processing steps to fix collisions that occur during inference. To address this challenge, Santesteban et al. [45] proposed a self-supervised loss, which is enabled by their powerful generative space of garment deformations. In contrast, we introduce a collision-aware regression network with fast body-garment collision detection and response, which is designed for the collision optimization between two SDFs of human and cloth. Our collision-aware network can be used to efficiently avoid collision in a differential fashion and also enhance the geometric details of garments according to human shape.

3. Methodology

Our framework consists of three major modules: parametric SDF net (PSDF Net), human SDF net, and garment SDF net. The PSDF Net consumes a 3D query point and a PCA latent code of the 3D clothing model and infers the binary occupancy of the reconstructed garment for the query point. The human and garment SDF nets take a single image as input and predict the occupancy of the undressed human and the garment respectively. At training time, each module is trained separately using the ground-truth data in a supervised manner. This is to ensure all the networks will learn the realistic shape priors. At test time, to obtain a high-fidelity and collision-free reconstruction, we introduce an optimization scheme that uses the output of the garment SDF net as the proxy of the main PSDF network to bridge the implicit representation and the parametric encoding. In particular, we use a reconstruction loss to encourage the outputs of the garment SDF net and the PSDF net to be close to each other. A novel collision loss is introduced to avoid the self-intersections between the predicted occupancy fields generated by the human and garment SDF nets. At the PSDF Net is fully differentiable, the self-supervised losses can provide gradient flows to optimize the latent PCA coefficients to obtain a high-quality and collision-free parametric encoding. In addition, a landmark loss is also proposed to foster the consistency between the 2D landmarks and the projections of the 3D landmarks pre-defined on the parametric mesh generated by the PCA encoding. Once the optimization converges, the parametric mesh represented by the optimized PCA code is used as our final reconstruction result.

3.1. Parametric SDF net

We first introduce our Parametric SDF Net (named PSDF Net), which aims to learn the explicit mesh and implicit field jointly using a common space of PCA.

Given a set of N garment meshes $M = \{M_1, M_2, ..., M_K\}$ with the same connectivity, we perform PCA [46] to obtain the first K principal components $B = \{B_1, B_2, ..., B_K\}$ and the corresponding scores S for each garment mesh. The number of K is determined according to the percentage of variance (here we set it to 99%) to retain the geometry details while removing the noise. This formulation satisfies:

$$PCA(M) \Rightarrow \{B, S\}$$ \hspace{1cm} (1)

After that, each explicit garment with the open surface can be represented as a linear combination of B with scores $S = (s_1, s_2, ..., s_K)$. Our PSDF Net aims to learn a mapping from the PCA scores S to the binary SDF (1 inside/0 otherwise). Given the sample point $p = (x, y, z)$ near the surface and the PCA score $S = (s_1, s_2, ..., s_K)$, PSDF Net learns a function $f_{PSDF} : (p, S) \mapsto 0/1$, which aims to map (p, S) to an occupancy value $0/1$, means outside/inside. Our network architecture is illustrated in Fig. 2, which consists of multi-layer perceptrons to classify whether the sampled point p is an insider or outsider of the surface. Note that since garment meshes are often open surfaces, we enclose
its open boundaries with the plane for sign distance calculation [47] of sampled points. And the basis of PCA is extracted from the real scanned dataset — MGN [1], which contains lots of garments meshes with more rich and realistic geometric details.

We design a two-branch SDF prediction network for garment and human reconstruction from a single image. Fig. 3 presents the network architecture of the PiFu-based Human and Garment reconstruction. The detailed network architecture is adapted from the PiFu [5]. Given a single image \(I \) with a single person, a human parsing extractor [48] is applied to automatically obtain the pixel-wise segmentation of garment labels. Then, we pass them into different branches to predict their occupancy respectively, and finally the iso-surfaces are extracted by MarchingCubes [49]. Here, we model two functions, including Human SDF Prediction \(f_{human} \) and Garment SDF Prediction \(f_{garment} \). These two functions take the pixel-wised feature and give 3D position samples in the space. So, we can obtain the 3D human and 3D garments from an input single image \(I \).

\section{3.2. Collision-aware regression}

The pixel-aligned approach is memory efficient and able to obtain high-fidelity 3D cloth and body geometries for the target subjects. However, directly predicting cloth and body implicit functions from an image may cause intersections between these two models since it is not collision-aware. As for some datasets, such as MGN [1], the ground truth data even is not body-garment collision-free.

We can obtain the SDFs \([SDFe, SDSf] \) of Garment and the underlying SDF \(SDSfH \) of Human. We formulate it as follows:

\[I_{collision} = \sum_{x \in \Omega} (SDFe(x) - SDSfH(x))T(SDFe(x), SDSfH(x)) \] \hspace{1cm} (4)

where the \(T(\cdot) \) is a collision detection function. \(\Omega \) is a set that contains sampled points in the space.

Different from previous methods which commonly search the nearest corresponding points on body shape for each point on the garment, our collision condition scheme effectively reduces the complexity of detecting collision points from \(O(n^2) \) to \(O(n) \). In Table 4, we show the efficiency comparison with BCNet [2] for collision detection. From the table, we can clearly see that our method achieves faster speed and outperforms the SOTA — BCNet on collision detection by a large margin, which ensures that our framework can predict the 3D garments and humans from a single image effectively and efficiently.

\section{3.3. Optimized garment reconstruction}

Our goal is to reconstruct realistic and high-fidelity garments from a single-view image. However, it is very challenging to obtain ground-truth data since we need both real-world images and the corresponding garment meshes. Earlier works either build their own datasets with synthetic data generated by physical simulation [2] or by using captured data with or without segmented labels [1,50]. The former simulated datasets often fail to capture the details in the real environment. Meanwhile, the scanned dataset typically has limited garment variations as it is expensive and cumbersome to obtain large-scale 3D real data.
Apart from the above three energy terms, we also introduce the landmark term in Eq. 2, given an input image requiring a large number of training data. Formally, as illustrated in Fig. 2, given an input image \(f \) and an initialized PCA weight \(z_0 \) (i.e. the weight of PCA is randomly selected in training data), we can obtain the human SDF \(SDF_H \), garment SDF \(SDF_G \), initial garment mesh \(M_{0b} \) and corresponding garment SDF \(f_{PSDF}(z, \cdot) \). To optimize the \(z_0 \) to the optimal \(z \), we define the following target:

- \(E_{\text{rec}} \): mean square distance between parametric garment SDF \(f_{PSDF}(z, \cdot) \) and the garment SDF \(SDF_G \), aims at reducing the difference between the predicted garments by the parametric SDF Net and the regressed garment implicit function by Garment SDF Net, i.e. \(E_{\text{rec}} = \| SDF_G(f_x, X) - f_{PSDF}(z, X) \|^2 \);
- \(E_{\text{collision}} \): collision cost between the predicted garment SDF \(f_{PSDF}(z, \cdot) \) and human SDF \(SDF_H \) in Section 3.2, i.e. \(E_{\text{collision}} = \sum_{X \in \Omega} (f_{PSDF}(z, X) - SDF_H(f_x, X))^2 \), where \(\Omega \) is the set of sampled points;
- \(E_{\text{reg}} \): regularization term to penalize unrealistic reconstruction, i.e. \(E_{\text{reg}} = \| z \|^2 \);

Apart from the above three energy terms, we also introduce the landmark loss to penalize landmark projection consistency error from the input image:

\[
E_{\text{landmark}} = \| \pi(LM_{3D}) - LM_{2D} \|^2, \tag{6}
\]

where \(LM_{3D} \) represents the 3D landmarks on the mesh generated by PCA, the indices of the 3D landmarks are the same since we use a template garment. \(LM_{2D} \) represents 2D ground truth landmarks that are manually labeled. \(\pi(\cdot) \) is a projection function with a given camera pose. The estimation of camera parameters is adopted from PIFu [5].

Finally, we can obtain the optimal PCA weight \(z \) by minimizing the formulation:

\[
E_{\text{rec}} + \omega_1 E_{\text{landmark}} + \omega_2 E_{\text{collision}} + \omega_3 E_{\text{reg}}, \tag{7}
\]

where \(\omega_1, \omega_2, \omega_3 \) are the weights to balance the optimization procedure. In our all experiments, we empirically set them as \(\omega_1 = 1.0, \omega_2 = 0.1, \omega_3 = 5.0 \).

4. Experiments & evaluations

We first illustrate our network training and implementation details. Then we evaluate our proposed approach on three tasks: garment reconstruction from a single image, garment generation and interpolation via PCA parameters, where we show the superiority of our proposed methods on the large garment datasets from MGN [1], compare to the other strong baselines including SMPLicit [4], PIFu [5], BCNet [2], and AnchorUDF [7]. We further benchmark the performance of the garment reconstruction from the in-the-wild images. In the end, ablation studies are conducted in order to validate our key designs.

4.1. Implementation details

Datasets. We primarily use MGN [1] for the majority of our experiments. The MGN dataset contains five categories of garments and 154 textured garment models. For training, we adapt the same method as PIFu and rendered 360-degree images of each garment along the yaw axis and obtained 48240 images in total. For the landmark on the 2D image, we use the same setting as the DeepFashion2 [51]. The data-splitting is followed from AnchorUDF [7].

<table>
<thead>
<tr>
<th>Components</th>
<th>Garment SDF net</th>
<th>Human SDF net</th>
<th>Parametric SDF net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td>0.01</td>
<td>0.01</td>
<td>4.52</td>
</tr>
</tbody>
</table>

Table 1 presents the reconstruction errors for each method. Benefiting from implicitly-proxied parametric encoding, our method can optimize the poses and shapes of humans and garment details, thus achieving the best performance for garment and human reconstruction. In the optimization stage, the reconstruction of a single garment image takes 400 epochs to converge. Note that all the experiments are evaluated on a computer with an i7-7700K CPU, 64G RAM, and a GeForce GTX 2080Ti graphic card.

4.2. Garment reconstruction

We qualitatively and quantitatively compare our method to other state-of-the-art for single-view garment reconstructions. Two metrics including the Chamfer Distance (CD) and average point-to-surface Euclidean distance (P2S) are used for qualitative evaluation. Table 2 presents the reconstruction errors for each method. Benefiting from implicitly-proxied parametric encoding, our method can optimize the poses and shapes of humans and garment details, thus achieving the best performance for garment and human reconstruction.

Table 2 presents the Chamfer Distance (CD) and Point to Surface (P2S) errors (\(\times 10^{-3} \)) of garment and human by different single-view reconstruction methods on MGN dataset. ‘-’ means that AnchorUDF only reconstructs the garment mesh. Lower is better.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Garment CD</th>
<th>P2S</th>
<th>Human CD</th>
<th>P2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnchorUDF [7]</td>
<td>0.635</td>
<td>0.762</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ours</td>
<td>0.494</td>
<td>0.172</td>
<td>0.332</td>
<td>0.364</td>
</tr>
</tbody>
</table>

Implementation. For our network, we first train on the PSDF Net and Human/Garment SDF Nets simultaneously. Our PSDF Net is used to map the parametric explicit garment mesh and the corresponding SDF into one common space of PCA parameters. Human/Garment SDF Nets aim to predict the human SDF and garment SDF from a single image. After that, we fix all the trainable parameters and optimize the PCA parameters \(z_0 \) by minimizing all the introduced energies in Section 3.3 of our main paper. Similar to DeepFashion3D [16], we focus on front-view reconstruction with a single person. Our whole network is implemented in PyTorch [52]. All the occupancy prediction network is implemented with MLPs, and the image-encoder for human/garment is adapted from PIFu [5]. For the training, the whole network is optimized by Adam optimizer [53], we set batch size as 8 and use a learning rate that is from 0.0001 and decays by 0.9 every 1000 steps. The PSDF Net will converge at 2000 epochs, and Human/Garment SDF Nets take 200 epochs to converge. Empirically, our network converges after 1 day.

Table 1 shows the detailed run-time statistics of Garment/Human SDF Net for one image inference and the iterative optimization costing of the Parametric SDF Net. In the optimization stage, the reconstruction of a single garment image takes 400 epochs to converge. Note that all the experiments are evaluated on a computer with an i7-7700K CPU, 64G RAM, and a GeForce GTX 2080Ti graphic card.
shown in Fig. 7, the alternative baselines yield realistic results, but they could hardly reconstruct the detailed garments, such as the wrinkles on the garments. We observe that our approach outperforms the alternative approaches and achieves better performance in terms of visual quality. In particular, the garments predicted by our method are more realistic. For various poses, we also conduct an experiment trained on the publicly available TailorNet [3] dataset which maintains simulated garments on quite different human poses. We tested on more in-the-wild images with various poses. As shown in Fig. 8, our method outperforms compared works in both human-pose alignment and garment detail prediction.

Discussion ImplicitPCA v.s. ReEF

Both our method and ReEF [41] are approaches combining explicit and implicit 3D representations of garments for single-view reconstruction. ReEF [41] register a template mesh to semantic, shape, and boundary implicit fields predicted from an image by an optimization scheme. There are two difficulties to get high-quality ReEF results. Firstly, learning each implicit field from images requires annotating large customized datasets as mentioned.
in the paper. For instance, professional artists annotate the garment boundaries on the scan surfaces and may link the incomplete boundary segments into smoothed closed curves with their expertise in garments’ shape. Secondly, the quality of mesh registration is depending on the initialization and the correspondence between the source and target. The initialization uses 2D pose estimation as guidance for SMPL prediction, which may fail to align with the shape implicit field in hard cases, e.g., different human poses. And the shape fitting is only processed in the subset of mesh vertices, which is a sparse correspondence. Instead of registering, our method jointly utilizes the good ends of explicit and implicit representation to achieve high-fidelity and physically plausible results. Explicit mesh representation has clear boundary information and topology which is used for 2D landmark supervision. The implicit function captures pixel-aligned features from images efficiently which are used for garment detail reconstruction. This hybrid parametric model enables realistic and topology-correct reconstructions, see more results in Fig. 8.

4.3. Garment generation & interpolation

Fig. 9 presents the garment generation via the explicit PCA parameters. In this figure, we show the visual results by controlling the first two dimensions of the PCA parameters. It is clearly observed that the first two-dimensional PCA parameters can control the orientation and size of the garments. So, equipped with explicit PCA parameters, our framework enables the novel generation of garments with a given factor. Table 3 shows the number of PCA components for different cloth in our experiments.

Since our framework bridges the explicit parametric model and implicit fields via PCA parameters, we can get parametric implicit proxies. In particular, garment generation and interpolation naturally are achieved with the help of explicit PCA parameters. In Fig. 10 we show some generated garments by randomly sampling on the PCA parameters of training data. The results demonstrate that our model is able to generate diversified 3D garments in both parametric meshes and learned implicit fields.

The interpolation results are further evaluated, which are shown in Fig. 11. We interpolate the PCA parameters from two input T-shirts linearly to control the generated implicit fields of the garment explicitly. The first row shows the generated results by PSDF that are represented as closed meshes extracted via MarchingCubes [49]. The second row is the corresponding open surfaces for each interpolated parameter. Our approach achieves smooth and continuous interpolation with detailed wrinkles. These experiments demonstrate the capabilities of our PSDF Net for achieving high-fidelity inference.

4.4. Ablation studies

With v.s. without collision loss. To evaluate the advantages of our collision-aware module proposed in 3.2, we separately show the impact of with and without collision loss on the garment and human reconstruction. In Fig. 12(c), it is observed that our method successfully minimizes the collision between the garment and body shape in Fig. 12(a). Besides, our method can prevent collisions on the unseen back of the garments, as well as enhance the geometric details of the garments concerning the body shape. There are also some post-processing algorithms (e.g. [2]) to handle the collision, but they introduce some bulges artifacts (see Fig. 12(b)) by moving the vertex along the normal direction. Furthermore, our collision detection method is 10^4 times faster than the post-processing approach, which benefited from the parametric implicit proxies (see Table 4).
Fig. 8. Cloth reconstruction comparison on in-the-wild images under arbitrary poses with PIFu [5], SMPLicit [4] and BCNet [2].

Fig. 9. Top: effect of the first principal component (controlling orientation). Bottom: effect of the second principal component (controlling size).

With vs. without each term in optimization routine. Fig. 13 illustrates the results generated by different settings of terms in the optimization routine. For each setting, it contains the regularization loss term to avoid instability synthesis. Although the model is constrained with only landmark loss term E_{landmark} generates 3D shapes aligned well with 2D key points, it leads to posing ambiguity without considering depth information. Furthermore, the model trained with both landmark and SDF reconstruction loss terms $E_{\text{landmark}} + E_{\text{recon}}$ generates a trouser in better gestures with more wrinkle details. However, the bottom of the trouser has apparent bending artifacts. This is due to the ignoring of collision. The model with full constraints outperforms others in generating detailed garments with desired gestures closer to the ground truth. The landmark-, reconstruction- and collision constraints jointly improve the quality of high-resolution cloth reconstruction. Moreover,
Fig. 10. Random generation of the shirt, T-shirt, and pants shapes, where the training data is from MGN dataset [1]. The first row is the extracted iso-surfaces via MC, and the second row is the corresponding meshes.

Fig. 11. Shape interpolation of T-shirts represented by SDF and mesh using PCA weights in our method. The first and last columns are two input shapes.

Fig. 12. Ablation of collision loss for regression of cloth and human SDF from a single-view image.

Table 4
Timing of different collision detection methods. \(G_p\) and \(H_p\) (\(\times 10^3\)) are the number of garment and human points and t(s) is the time cost.

<table>
<thead>
<tr>
<th>Method</th>
<th>(G_p/H_p/t)</th>
<th>(G_p/H_p/t)</th>
<th>(G_p/H_p/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCNet</td>
<td>6/6/0.492</td>
<td>19/22/2.609</td>
<td>181/384/44.38</td>
</tr>
<tr>
<td>Ours</td>
<td>7/7/5.10 (\times 10^{-3})</td>
<td>20/20/7.70 (\times 10^{-3})</td>
<td>400/400/8.39 (\times 10^{-3})</td>
</tr>
</tbody>
</table>

Table 5
Chamfer Distance (CD) and Point to Surface (P2S) errors (\(\times 10^{-3}\)) of garment optimization schemes with different energy terms on MGN dataset. Lower is better.

<table>
<thead>
<tr>
<th>Methods</th>
<th>(E_{\text{landmark}})</th>
<th>(E_{\text{landmark}} + E_{\text{rec}})</th>
<th>(E_{\text{all}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>23.6</td>
<td>0.624</td>
<td>0.494</td>
</tr>
<tr>
<td>P2S</td>
<td>12.9</td>
<td>0.242</td>
<td>0.172</td>
</tr>
</tbody>
</table>
by comparing Chamfer Distance (CD) and point-to-surface (P2S) in Table 5, we observe that the best performances are achieved only when all energies are fused.

5. Conclusions & discussions

In this paper, we have presented a novel hybrid representation for 3D cloth and humans, called ImplicitPCA. We integrate the parametric-based method and implicit-based method and introduce a collision-aware regression network with fast collision detection and penalization. Our experiment indicates that high-fidelity garments following physical rules can be inferred from a monocular image. We envision that ImplicitPCA would benefit from a series of Metaverse applications, such as virtual try-on and garment editing.

Finally, although our model achieves state-of-the-art performance in realistic and high-fidelity garment reconstruction, our method still has some failure cases. As shown in Fig. 14, some poses with cloth collisions result in a lack of information, thus making it difficult to infer the side-view of the person. These cases can be very challenging for our collision-aware module, and the reconstructed cloth will crash into the person as shown in Fig. 14. Hence, for future work, some priors of poses can be applied to enhance the quality of garments during extremely challenging cases. The generalization of our method in garment categories is also limited by the training dataset. For those garments categories that are not covered in the training set, the recovery process can only converge to the most similar category. We will both extend the dataset and explore a typology augmentation method in the future.

CRediT authorship contribution statement

Lan Chen: Conceptualization, Methodology, Software, Validation, Writing – original draft. Jie Yang: Conceptualization, Methodology, Writing – original draft, Visualization. Hongbo Fu: Conceptualization, Methodology, Writing – review & editing. Xiaoxu Meng: Conceptualization, Methodology, Writing – review & editing. Weikai Chen: Conceptualization, Methodology, Writing – review & editing. Bo Yang: Conceptualization, Methodology, Writing – review & editing. Lin Gao: Conceptualization, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the Beijing Municipal Natural Science Foundation for Distinguished Young Scholars (No. JQ21013), the National Natural Science Foundation of China (No. 62061136007), the Royal Society Newton Advanced Fellowship (No. NAF\R2\192151) and Open Research Projects of Zhejiang Lab (No. 2021KE0AB06).

References

