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Abstract

Caenorhabditis briggsae as a companion species for Caenorhabditis elegans has played an increasingly important role in study of evolution
of development and genome and gene regulation. Aided by the isolation of its sister spices, it has recently been established as a model
for speciation study. To take full advantage of the species for comparative study, an effective transgenesis method especially those with
single-copy insertion is important for functional comparison. Here, we improved a transposon-based transgenesis methodology that had
been originally developed in C. elegans but worked marginally in C. briggsae. By incorporation of a heat shock step, the transgenesis effi-
ciency in C. briggsae with a single-copy insertion is comparable to that in C. elegans. We used the method to generate 54 independent
insertions mostly consisting of a mCherry tag over the C. briggsae genome. We demonstrated the use of the tags in identifying interacting
loci responsible for hybrid male sterility between C. briggsae and Caenorhabditis nigoni when combined with the GFP tags we generated
previously. Finally, we demonstrated that C. briggsae tolerates the C. elegans toxin, PEEL-1, but not SUP-35, making the latter a potential
negative selection marker against extrachromosomal array.

Keywords: miniMos, Caenorhabditis briggsae, heat shock, transgenesis

Introduction
As a comparative model of Caenorhabditis elegans, Caenorhabditis
briggsae shares a similar morphology, carries a genome of compa-
rable size (Stein et al. 2003; Ross et al. 2011; Ren et al. 2018; Yin
et al. 2018; Li et al. 2020) and adopts similar developmental pat-
tern to that of C. elegans (Zhao et al. 2008). Caenorhabditis elegans is
a model organism. Its genome has been subject to intensive
manipulations with various tools, including random mutagenesis
with ultraviolet light coupled with trimethylpsoralen (UV/TMP)
(Thompson et al. 2013), low copy insertion of transgenes with
biolistic bombardment (Praitis et al. 2001; Hochbaum et al. 2010;
Radman et al. 2013), targeted single-copy insertion using tran-
scription activator-like effector nucleases system (Wood et al.
2011; Lo et al. 2013), or using CRISPR/Cas9 system (Chiu et al.
2013; Cho et al. 2013; Waaijers et al. 2013; Dickinson et al. 2015;
Dickinson and Goldstein 2016), Mos1-mediated single-copy inser-
tion (MosSCI) (Frøkjær-Jensen et al. 2008) as well as random
single-copy insertion with miniMos (Frøkjær-Jensen et al. 2014).
Many of these tools have been adopted in C. briggsae for genome
editing with a comparable or a much-reduced successful rate.
For example, biolistic bombardment was successfully adopted in
C. briggsae transgenesis with comparable efficiency, whereas
single-copy insertion with miniMos demonstrated a much lower
efficiency in C. briggsae than in C. elegans (Praitis et al. 2001;
Semple et al. 2010; Zhao et al. 2010; Frøkjær-Jensen et al. 2014; Bi

et al. 2015). An efficient transgenesis method with single-copy in-

sertion is essential for comparative functional study of biology

between C. elegans and C. briggsae. Recent work in Caenorhabditis

species has demonstrated that heat shock treatment or compro-

mised function in heat shock pathway significantly increased the

frequency of transposition (Ryan et al. 2016), raising the possibil-

ity of improving miniMos-based transgenesis in C. briggsae by in-

corporation of a heat shock step or inhibition of activities of heat

shock proteins.
Isolation of C. briggsae sister species, Caenorhabditis nigoni, with

which it can mate and produce viable progeny, paves the way of

speciation study using nematode as a model for the first time

(Woodruff et al. 2010; Kozlowska et al. 2012). To isolate postzygotic

hybrid incompatible (HI) loci between C. briggsae and C. nigoni, a

dominant and visible marker is required for targeted introgres-

sion, in which the genome of one species is labeled with the

marker and repeatedly backcrossed into the other to isolate the

HI loci. The marker greatly facilitates tracing of its linked geno-

mic fragment during backcrossing and its associated HI pheno-

type. Given numerous such markers are required over a genome,

generation of such markers using targeted single-copy insertion

becomes an enormous burden. This is because that the efficiency

for targeted single-copy insertion is relatively low. As an alterna-

tive, over 100 GFP markers were inserted into the C. briggsae ge-

nome with biolistic bombardment, which allowed genome-wide
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mapping of HI loci between the 2 species (Yan et al. 2012; Bi et al.
2015; Ren et al. 2018).

Biolistic bombardment using cbr-unc-119 (Zhao et al. 2010; Bi et al.
2015) generates low copy number of transgene into genome but
requires tedious animal preparations. It also needs to wait for several
weeks before screening for transformed animal. In addition, presum-
ably due to dramatic mechanical shearing, the transgenic animals
often suffer from chromosomal rearrangements (Bi et al. 2015; Ren
et al. 2018; Tyson et al. 2018; Ding et al. 2022). Importantly, the inser-
tion site cannot be precisely determined due to unknown copy num-
ber of the transgene and its arrangement within host genome. As
such, the transgene insertion sites were estimated by genotyping in-
trogression boundary with PCR using species-specific primers (Yan
et al. 2012; Bi et al. 2015). Unfortunately, the divergence between the
C. briggsae and C. nigoni genomes is too far to allow efficient recombi-
nation during backcrossing, resulting in a poor mapping resolution of
the insertion site (Yan et al. 2012; Bi et al. 2015, 2019).

We have recently demonstrated that inter-chromosomal inter-
actions are involved in hybrid male sterility between C. briggsae and
C. nigoni (Li et al. 2016; Bi et al. 2019). For example, a C. briggsae X
chromosome fragment in an otherwise C. nigoni background as an
introgression leads to male sterility. Hybrid F1 male sterility can be
rescued by the presence of the introgression and another C. briggsae
genomic fragment on its Chromosome II. We speculate that such
interacting loci might be common in producing HI. Availability of
the dual-color labeling system makes it possible for systematic
mapping such interacting loci. This is because it facilitates tracking
of cosegregation of the 2 loci. It is worth noting that most existing
markers in the C. briggsae genome were derived from GFP, prevent-
ing effective screening for such loci. Therefore, C. briggsae animals
bearing a visible marker other than the GFP are desired.

Transposon-mediated single-copy insertion at random genomic
position with high efficiency has been successfully developed in C.
elegans (Frøkjær-Jensen et al. 2014). A fly transposon Mos1 was trun-
cated with minimal transposon sequences, termed as miniMos cargo
vector, in order to boost its capacity of carrying foreign DNA
(Frøkjær-Jensen et al. 2014). Single-copy of transgene can be inserted
into host genome at high frequency via coinjecting a transposase-
expressing vector and miniMos cargo vector into C. elegans gonad.
The method was also adopted in C. briggsae but with a much lower
efficiency with unknown reasons (Frøkjær-Jensen et al. 2014).
Attempts have been made to improve insertion frequency in C.
briggsae. For example, the promoter (cel-Peft-3) driving transposase
expression was substituted with C. briggsae promoter cbr-Peft-3 or
cbr-Ppie-1 in order to boost transposase expression. However, the in-
sertion frequency did not improve as expected. A highly efficient
method for inserting single-copy transgene has yet to be established
in C. briggsae. To facilitate screen for single-copy insertion, a nega-
tive selection marker cel-Phsp-16.41::peel-1 was co-injected into ani-
mals to kill extrachromosomal array-bearing worms during
screening (Frøkjær-Jensen et al. 2012). However, the killing efficiency
of the negative selection marker peel-1 has not been investigated in
C. briggsae.

This study established a highly efficient methodology for inserting
single-copy transgene into the C. briggsae genome based on miniMos.
Negative selection markers against transgene existing only in extra-
chromosomal array were also explored with limited success.

Materials and methods
Nematode strains
Caenorhabditis elegans, C. briggsae, and C. nigoni wild isolates used in
this study were N2, AF16, and JU1421, respectively. The C. briggsae

dpy-5(zzy0580) knockout strain ZZY0580 was generated using
CRISPR/Cas9 with AF16 followed by backcrossing to AF16 for 3 gen-
erations. Introgression strains used were ZZY10330 (zzyIR10330 (X
[cbr-myo-2p::gfp, cbr-unc-119(þ)]), AF16>JU1421) (Bi et al. 2015),
ZZY10377 (zzyIR10377 (X [cbr-myo-2p::mCherry, neoR]), AF16>JU1421)
from C. briggsae transgenic strain ZZY0777 (Supplementary Table
1). Introgression strains ZZY10353 (zzyIR10353 (II [cbr-myo-2p::gfp,
cbr-unc-119(þ)]), AF16>JU1421) (Bi et al. 2015) and ZZY10382
(zzyIR10382 (II [cbr-myo-2p::mCherry, neoR]), AF16>JU1421) were gen-
erated from C. briggsae transgenic strain ZZY0782 (Supplementary
Table 1). Details for all the transgenic strains generated in this study
were included in Supplementary Table 1. All the C. elegans and
C. briggsae lines were maintained on 1.5% arose nematode growth
medium (NGM) seeded with E. coli OP50 at room temperature and in
a 25�C incubator, respectively, unless specified otherwise.

Molecular cloning
pZZ203 was derived from pZZ0031 (Yan et al. 2012) by removing cbr-
Pmyo-2::gfp::his-72 UTR by cutting using KpnI and ApaI (NEB). The
digested pZZ0031 backbone carrying cbr-unc-119(þ) was gel purified,
blunt end repaired, and self-ligated to give rise to pZZ203. pZZ160
and pZZ161 was derived from pCFJ910[NeoR] and pCFJ909[cbr-unc-
119(þ)], respectively, by inserting both cbr-Pmyo-2::gfp::his-72 UTR and
cbr-dpy-5(þ) into minimal Mos1 transposon. pZZ184 was derived from
the pZZ160 by replacing gfp::his-72 UTR and cbr-dpy-5(þ) with
mCherry::unc-54 UTR from pGH8 (Frøkjær-Jensen et al. 2008). The plas-
mids pZZ185 and pZZ196 for negative selection were derived from
pCFJ601[Peft-3::Mos1 transposase::tbb-2 UTR] by replacing the Mos1
with sup-35 (Ben-David et al. 2017) and peel-1 (Seidel et al. 2008, 2011),
respectively. The plasmid kit containing pCFJ601, pCFJ909, pCFJ910,
pGH8, and pMA122 was acquired from Addgene (cat# 1000000031).
Vector pZZ113 containing sgRNA expression cassette against cbr-dpy-
5 was derived from PU6::unc-119_sgRNA (Addgene plasmid # 46169)
as described (Friedland et al. 2013). The cbr-dpy-5 gRNA target se-
quence is GGAGCCCCAGGAGAGCCAGG. Primers used for construct
building were listed in Supplementary Table 2. An overview of plas-
mid compositions was shown in Supplementary Fig. 1.

Plasmids for microinjection were extracted using the PureLink
HQ Mini Plasmid Purification Kit or HiPure Plasmid Midiprep kit
(Invitrogen). Genomic DNAs were extracted from mix-staged ani-
mals with PureLink Genomic DNA Mini Kit (Invitrogen). Injection
mixture for transformation consisted of miniMos cargo vector at
20 ng/ml, Mos1 transposase-expressing plasmid at 50 ng/ml, red or
green fluorescent coinjection markers each at 10 ng/ml. pZZ203 was
added to 80 ng/ml with a total DNA concentration of 170ng/ml.
Plasmids pMA122, pZZ185, and pZZ196 were built to test their use
as a negative selection marker. Neomycin stock solution of 12.5 mg/
ml was made with G418 powder (ThermoFisher) in water.

Transgenesis
Animal injected with pZZ160 (GFP) or pZZ184 (mCherry) and
pCFJ601 was individually placed on a 55-mm crossing plate
seeded with OP50 (�6.7 ml NGM per plate), and allowed to recover
at 25�C overnight (roughly 12–16 h) (Fig. 1). For heat shock treat-
ment, plates with injected animals were sealed with parafilm
and incubated on the water bath preheated to 35�C for 3 h.
Remove parafilm and any water droplet on the inner lid.
Incubate plates at room temperature (�22�C) for half an hour.
Add 0.5 ml 12.5 mg/ml neomycin (G418) solution prewarmed up
at room temperature onto each plate. Gently rotate plates to al-
low neomycin solution to fully cover plate surface. Air-dry the
plates and incubate the dried plates in a 25�C incubator for
6–7 days. Due to the presence of selection marker NeoR in the
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injected miniMos plasmids (pZZ160 and pZZ184), single 10–12 sur-

vived L4 or young adult animals from the plates crowded with

animals that do not express coinjection marker onto individual

plates to be incubated at 25�C. After 2–3 days, harvest animals

with homozygous transgene based on the reporter expression

and lack of expression of visible coinjection marker for

genotyping.

Quantification of P0 insertion frequency
Three days after microinjection, plates without F1 transgenic

progeny were discarded and excluded from the number of

injected P0 animals. The F2 animals were screened for miniMos in-

sertion under stereo-microscope based on reporter expression or

phenotypic rescue, and the absence of coinjection markers.

Animals confirmed with transgene insertion from the same P0

plate were treated as an independent single-copy insertion. The

P0 insertion frequency was measured through dividing the num-

ber of independent insertions by the total number of injected P0

animals. Mapping of insertion site was performed as described

(Frøkjær-Jensen et al. 2014). The C. briggsae cb4 genome (Ross et al.

2011) was used to report the chromosomal coordinates.

Selection marker for transformation
For selection with Neomycin (NeoR), injected animals were

allowed to recover overnight (12–16 h) followed by heat shock

treatment on a 35�C water bath for 3 h. The heat shock treated

plates were incubated at room temperature for half hour to re-
cover. Then 500 ll of 12.5 mg/ml G418 solution was added to each
plate. Plates were incubated at 25�C for 6–7 days. Twelve F2 ani-
mals were singled onto a new NGM plate from the P0 plates
crowded with animals. Homozygosity was checked based on re-
porter expression in F3.

For selection with cbr-dpy-5, all rescued dpy-5(þ) F1 animals
were singled onto individual plates. Twelve F2 animals were sin-
gled onto new plate from each F1 plate in which over 50% animals
were dpy-5(þ) ones. F2 plates with 100% dpy-5(þ) animals that did
not express visible coinjection markers were kept for genotyping.

Development of negative selection marker for
extrachromosomal array
A fusion PCR product was made between a cassette consisting of
peel-1::tbb-2 UTR or gfp::tbb-2 UTR and the C. briggsae syntenic re-
gion of hsp-16.41 promoter with the primers listed in
Supplementary Table 2. Additional details of C. briggsae syntenic
region of hsp-16.41 promoter sequence screening are available in
Supplementary Fig. 2. Injection mixture was made with pMA122,
pZZ185, pZZ196, or the fusion PCR product at 70 ng/ml, fluores-
cent coinjection marker vector pZZ161 at 20 ng/ml, pGH8, pCFJ90,
pCFJ104 at 10 ng/ml each, and pZZ203 at 50 ng/ml.

To examine the lethality in C. briggsae after heat shock, an
array-bearing line was generated and embryos harvested for syn-
chronization. The synchronized L1 animals were divided into 2
groups, one was subjected to heat shock treatment at 35�C for 3 h
before transferring into 25�C incubator, and the other was incu-
bated at 25�C without heat shock treatment as a control.
Caenorhabditis elegans heat shock treatment was performed at
34�C for 3 h. The ratio of surviving adults carrying an array out of
all progeny were calculated in both control and heat-shock
treated animals.

Introgression
Introgression was performed as described (Bi et al. 2015).
Specifically, C. briggsae transgenic strains, ZZY0777 and ZZY0782
each expressing a single-copy of Pmyo-2::mCherry located on the
X and chromosome II, respectively, were backcrossed to C. nigoni
(JU1421) for 15 generations to give rise to ZZY10377 and
ZZY10382. Introgression boundaries were mapped as described
(Yan et al. 2012).

Results
Heat shock treatment significantly increased the
efficiency of transgene insertion
To improve the transgenesis efficiency using miniMos in C. brigg-
sae, we started the transgenesis by repeating the steps basically
as described previously (Frøkjær-Jensen et al. 2014), i.e. injection
of a vector carrying cbr-Pmyo-2::gfp along with a transposase-
expressing vector into cbr-unc-119 deletion mutant strain
RW20000 (Zhao et al. 2010). One of major complications associ-
ated with the cbr-unc-119 as an injection selection marker was the
low transformation efficiency even for the formation of extra-
chromosomal array. This was the case using the rescuing frag-
ment from either C. elegans or C. briggsae (data not shown). We
speculated that the low insertion rate associated with the selec-
tion marker could be related to the low transformation efficiency
of single-copy insertion.

To improve transformation efficiency, we generated another in-
jection selection marker cbr-dpy-5 using CRISPR/Cas9. This was
based on the observation that dpy-5 had been used as a very

Isolate homozygous lines

Wait for 6~7 days

F2

P0

F1

F3

Heat shock

Add neomycin

Microinjection of vectors expressing 
transposase and tissue marker  

Single F2 from plates crowded with 
animals to individual plates

Check homozygosity based on 
reporter expression

Single animals onto NGM plate with food

Recovery at 25°C for 12~16 hours 

Heat shock at 35°C for 3 hrs

Add 500 µl (12.5 mg/ml) G418 solution 

Fig. 1. Schematics of optimized protocol for miniMos-based transgene
insertion in C. briggsae. Young adult animals were injected with
transposase-expressing vector, i.e. pCFJ601, along with a cargo vector, i.e.
pZZ160 (Pmyo-2::GFP) or ZZ184 (Pmyo-2::mCherry). The expressed
transposase is expected to cut the myo-2 promoter fusion DNA fragment
and randomly insert into the host genome. A heat shock was included to
increase transgenesis efficiency. A neomycin resistance gene, NeoR, was
included in the cargo vector so that only transgenic animals carrying
NeoR as either extrachromosomal array or single-copy transgene can
grow on the NeoRþ plates. The categories of transgenic animals can be
roughly differentiated by population growth rate on NeoRþ plates. As an
option, a second visible marker, for example, a second fluorescence
maker with different color, can be included in the injection mixture to
distinguish the array-containing animals from those without array.
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efficient selection marker in C. elegans microinjection (Zhao et al.
2004; Hunt-Newbury et al. 2007). As expected, cbr-dpy-5 worked as
an effective selection marker for microinjection. We successfully
obtained 3 independent transgenic lines with single-copy insertion
using the marker after injecting 35 animals. However, due to lack of
negative selection maker against extrachromosomal array, it is te-
dious to screen for the rescued animals out of all progeny.

We then performed miniMos-based single-copy insertion using
neomycin as a selection marker as described (Giordano-Santini
et al. 2010; Frøkjær-Jensen et al. 2014). The method provided a key
advantage in simplifying selection of the transformed animals
because all unrescued animals were killed, but the overall effi-
ciency of obtaining single-copy insertion was not improved com-
pared with previous studies (Fig. 2).

Given that heat shock treatment significantly increased trans-
position frequency (Ryan et al. 2016), we reasoned that inclusion
of a heat shock step might boost the successful rate of transgene-
sis in C. briggsae based on miniMos, which is a modified transpo-
son. As expected, inclusion of a step of heat shock treatment, i.e.
35�C for 3 h, we were able to significantly increase the frequency
of single-copy insertion of Pmyo-2::gfp or Pmyo-2::mCherry (Figs. 1
and 2). Insertion frequency increased from lower than 5% with-
out heat shock to �25% with heat shock for both constructs, indi-
cating that the heat shock treatment was essential for increasing
transposition rate.

A large collection of single-copy insertions
expressing Pmyo-2::mCherry were generated in
C. briggsae
To complement the genetic resources mainly consisting of GFP
insertions over the C. briggsae we generated previously (Bi et al.
2015), we decided to generate a cohort of insertions randomly dis-
tributed over the C. briggsae genome with a focus on generation
of insertion expressing a fluorescent protein other than GFP, i.e.
Pmyo-2::mCherry. This would be particularly useful for isolation
of interacting loci responsible for hybrid male sterility as detailed
below. To this end, we generated a total of 54 insertions

consisting of 9 Pmyo-2::gfp and 45 Pmyo-2::mCherry that were able
to be uniquely mapped to the C. briggsae genome (Fig. 3;
Supplementary Table 1). The markers show roughly random dis-
tribution over the C. briggsae genome.

Dual-colored marking system facilitates screen
for interacting loci responsible for HI loci
We demonstrated that genetic interaction between X Chromosome
and autosome was essential for hybrid male sterility between C.
briggsae and C. nigoni (Bi et al. 2019). Identification of such interacting
loci is challenging without proper markers on interacting chromo-
somes. We showed that the interaction between independent
GFP-labeled C. briggsae introgression fragments on 2 different chro-
mosomes was essential for male fertility in C. nigoni, but it was diffi-
cult to pinpoint these interacting loci systematically. Availability of
such dual-color labelled strains would greatly facilitate the identifi-
cation of such interactions. To help illustrate this point, we tried to
recapitulate the interaction we identified earlier by using 2 C. nigoni
strains ZZY10377 and ZZY10382 that carry a mCherry-labeled in-
trogression fragment derived from the right arm of the C. briggsae X
and chromosome II (Fig. 4), respectively, between which an interac-
tion was found (Bi et al. 2019). We crossed 2 introgression strains,
one labeled with GFP and the other with mCherry in reciprocal way.
We then examined the fertility of the males that simultaneously
carried both introgressions. We found that the males carrying both
loci were mostly fertile, whereas the males carrying a single intro-
gression of GFP or mCherry inserted on the X chromosome were
sterile, indicating that the dual-color labeled introgressions did re-
capitulate the interaction. Presence of the dual-colored markers
paves the way for genome-wide identification of any other interact-
ing loci responsible for the hybrid incompatibilities.

Caenorhabditis briggsae appeared to develop
native immunity against PEEL-1
For transgene insertion using MosSCI or miniMos in C. elegans, a
sperm-derived toxin gene, peel-1, is used as a negative selection
marker to effectively kill extrachromosomal array-bearing
worms (Seidel et al. 2011; Frøkjær-Jensen et al. 2012, 2014), greatly
reducing the burden of screening for transgenic strains carrying
an insertion out of all transgenic animals, including those carry-
ing an extrachromosomal array.

To adopt the negative selection marker in C. briggsae, we first
compared the killing effect of PEEL-1 in C. elegans and C. briggsae
through its forced expression driven by a C. elegans heat shock
promoter, Phsp-16.41. We generated transgenic lines carrying ex-
trachromosomal array consisting of the PEEL-1-expressing vector
in both C. elegans and C. briggsae. The synchronized L1 animals
were subjected to heat shock at 34�C and 35�C for C. elegans and
C. briggsae, respectively. The killing effect in C. elegans was com-
parable to that reported previously (Seidel et al. 2011), but no ap-
parent killing was observed in C. briggsae after heat shock
treatment (Fig. 5a).

To further investigate what caused the failure of PEEL-1 to kill
C. briggsae, we replaced C. elegans heat shock promoter, Phsp-
16.41, with its C. briggsae equivalent (Supplementary Fig. 2) and
generated the transgenic lines. Again, we did not observe signifi-
cant increase in killing (Fig. 5a). We reasoned that the C. briggsae
heat shock promoter might not be a functional equivalent of
Phsp-16.41. To examine whether the C. briggsae syntenic heat
shock promoter responds to heat shock treatment, we generated
transgenic lines carrying extrachromosomal array consisting of a
fusion between the C. briggsae heat shock promoter and GFP. We
did see induced GFP expression in the transgenic animals after
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heat shock treatment in both C. elegans and C. briggsae (data not

shown), suggesting that C. briggsae somehow develops immunity

against PEEL-1. To further investigate C. briggsae’s immunity

against PEEL-1, we generated transgenic C. briggsae animals

expressing peel-1 driven by an effective promoter, Peft-3, which

was known to able to drive expression in C. briggsae (Frøkjær-

Jensen et al. 2012, 2014). Again, we did not observe a significant

killing effect (Fig. 5b). Taken together, it seems that C. briggsae

develops native immunity against PEEL-1, preventing it from be-

ing used as a negative selection marker against extrachromo-

somal array.

Limited success of using sup-35 as a negative
selection marker for extrachromosomal array
In addition to peel-1, a maternal-effect toxin, SUP-35, that kills de-

veloping embryos, has recently been identified in C. elegans (Ben-

David et al. 2017). To test the killing efficiency of SUP-35 in C.

briggsae, we made a sup-35-expressing vector driven by the C. ele-

gans eft-3 promoter, Peft-3 (Supplementary Fig. 1). We injected the

construct along with fluorescence coinjection markers into both

C. elegans and C. briggsae. As expected, nearly all F1 embryos

expressing the fluorescence markers arrested at late embryogen-

esis or as early larvae for both C. elegans and C. briggsae (Fig. 5c),

indicating that SUP-35 is an effective toxin in C. briggsae and has

a potential to be developed as a negative selection marker against

extrachromosomal array in C. briggsae. To this end, we generated

transgenic strains in C. elegans and C. briggsae that carry an extra-

chromosomal array, which consists of the sup-35-expressing vec-

tor driven again by C. briggsae equivalent of hsp-16.41 promoter

(Supplementary Fig. 2). However, we did not observe any signifi-

cant killing effect in C. elegans after heat shock treatment

(Fig. 5d). Caenorhabditis elegans expresses both PEEL-1 and its anti-

dote ZEEL-1 only transiently in embryo, but expresses SUP-35

and its antidote PHA-1 throughout its life cycle (Gerstein et al.

2010). It is possible that the postembryonic PHA-1 is sufficient to

neutralize the toxicity of SUP-35 induced by heat shock treatment

in C. elegans. It is also possible that the C. briggsae heat shock pro-

moter may not respond to heat shock as effectively as its C. ele-

gans equivalent in C. elegans. Consistent with this, the heat shock

treatment showed a significant killing effect in C. briggsae carry-

ing the same construct, i.e. from 66.4% to 39.6% though it is not

efficient enough to serve as a negative selection marker.

Discussion
Given the similar morphology, physiology and developmental
program between C. elegans and C. briggsae, methods for C. elegans
transgenesis are expected to be transferrable to C. briggsae with
minimal modification. However, there is an exception to this,
which is the case for miniMos mediated single-copy insertion
(Frøkjær-Jensen et al. 2014).

Potential cause of low efficiency of transgenesis
in C. briggsae mediated by miniMos
It has been well established that transposon mobility can be sig-
nificantly increased across species after exposure to biotic or abi-
otic stress (Liu et al. 1995; Walbot 1999; Bouvet et al. 2008). Heat
shock proteins serve as molecular chaperone to facilitate folding
of other proteins into their appropriate conformations following
heat exposure, thus buffering the subsequent phenotypic
changes (Erlejman et al. 2014). Perturbation of heat shock protein
also increases transposition frequency in a similar way to that of
heat treatment itself. It is possible that under optimal growth
condition, C. briggsae has a more robust system to maintain ge-
nome integrity in its germline than C. elegans, which prevents its
genome from environment-induced damage or editing.
Improvement of transgenesis efficiency by heat shock treatment
or inhibition of heat shock pathway could be at the cost of com-
promised genome integrity. One important way to preserve ge-
nome integrity in the germline is through Piwi-interacting RNA
(piRNA), which constitutes one of the major regulatory molecules
that curb the transposon activities (Ishizu et al. 2012). Consistent
with this, functional perturbation of Hsp90 attenuates the piRNA
silencing mechanism, leading to transposon activation and the
induction of morphological mutants in Drosophila (Specchia et al.
2010). It is unclear in C. elegans whether the heat shock treatment
leading to increased transposon mobilization. This is because the
PRG-1 piRNA mutant does not show increased transposon mobili-
zation even after many generations (Wahba et al. 2021).

Differential responses to PEEL-1 and SUP-35
between C. elegans and C. briggsae
It is intriguing that C. briggsae responds differentially to the over-
expressed paternal toxin PEEL-1 and maternal toxin SUP-35 from
C. elegans. In C. elegans, PEEL-1 was suspected to function as a cal-
cium pump on the cell membrane by generating a membrane
pore, which leads to the release of intracellular calcium (Seidel
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et al. 2011). The maternal-effect toxin, SUP-35, kills developing
embryos, but the molecular mechanism of its toxicity remains
unclear (Ben-David et al. 2017). Our data showed that C. briggsae
somehow develops native immunity against PEEL-1 but not SUP-
35 (Fig. 5). However, forced expression of SUP-35 driven by the C.
briggsae heat shock promoter did not mediate complete killing of

C. briggsae after heat shock treatment (Fig. 5d). Two possible rea-
sons account for the ineffective killing. First, time windows for
SUP-35 killing seem to be narrow, i.e. at certain stage of embryo-
genesis. This is why a constitutive promoter, i.e. eft-3 promoter is
able to drive SUP-35 expression and mediate complete killing. For
the heat shock promoter, its response to heat shock may be more
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Fig. 4. Use of dual-color fluorescent markers in mapping interacting loci responsible for rescue of HI phenotype. a) Schematics of introgression strains
expressing GFP marker (green) generated previously with biolistic bombardment or mCherry marker (red) generated with miniMos in this study. Strains
ZZY10330 and ZZY10377 carry an X-linked introgression derived from C. briggsae that produces GFP or RFP expression, respectively, and HI phenotype
in an otherwise C. nigoni background, i.e. hybrid male sterility. Strains ZZY10353 and ZZY10382 carry a Chromosome II-linked introgression derived
from C. briggsae that produces GFP or RFP expression, respectively, and HI phenotype in an otherwise C. nigoni background, i.e. homozygous inviable
(data not shown). b) Schematics of crossing strategy in mapping interacting loci between X chromosome and Chromosome II. We previously
demonstrated that presence of the introgression fragment from ZZY10353 rescued the male sterility of ZZY10330. However, this demands tedious
genotyping of ZZY10353 to ensure its presence because it is impossible to distinguish the 2 introgressions both expressing GFP. Substitution of
ZZY10353 with ZZY10382 expressing RFP greatly facilitated the process for screening for simultaneous presence of the 2 introgressions. c) Reciprocal
crossing between strains with autosome- and X-linked introgressions expressing GFP and RFP, respectively, serves as the same purpose as in (b).
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effective during larval development than embryogenesis. Second,

heat-shock induced expression of SUP-35 may not provide

enough dosage to kill C. briggsae larvae. Further optimization of

heat shock condition or choice of a different heat-shock promoter

is necessary to develop an effective negative selection marker

against extrachromosomal array in C. briggsae.

Data availability
Strains and plasmids are available upon request. Supplementary

Figure 1 contains configurations of plasmids used in the study.

Supplementary Figure 2 shows the schematics of steps in identi-

fying C. briggsae heat shock promoter and the sequence of C.

briggsae heat shock promoter tested in this study. Supplementary

Table 2 contains sequence information of all primer sequences

used in genotyping and molecular cloning. Supplementary Table

1 lists transgene insertion site within the C. briggsae genome.
Supplemental material is available at G3 online.
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