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ABSTRACT

Multistability in a dynamical system has attracted great attention recently for its complex and unexpected states. Since in most chaotic sys-
tems coexisting attractors reside in their own individual basin of attraction with a fractal structure, it becomes a challenge to choose correct
initial conditions to obtain desired dynamics. Selecting typical dynamics as the basic components in a dynamical sequence and then arrang-
ing them in the phase space in a desired order make the multistability transparent and controllable in the domain of initial conditions;
thereafter, one can identify an attractor according to its initial sequence. Dynamics editing provides an effective technique to select typical
attractors under different system parameters to form a flexible sequence in the phase space, which shows great potential for chaos-based
secure communications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006020

Offset boosting is an effective technique to arrange coexisting
attractors. A piecewise-linear function is designed to create a
dynamic selector in a dynamical system for editing coexisting
attractors. The dynamic sequence depends on the dynamic selec-
tor, from which the dynamics in the parameter domain burst into
the domain of the initial conditions. In this paper, the systematic
methodology of dynamics editing is demonstrated and confirmed
with a simple chaotic system of conditional symmetry induced by
2D offset boosting.

I. INTRODUCTION

Multistability has been an attractive research subject in the field
of nonlinear dynamics.1�16 In most cases, multistability causes diffi-
culties to engineering design and analysis. Bistability1�5 leaves two
possibilities for the final state of the system, while tristability gives
three,6,7 and other multistable systems may provide four8,9 or even
infinitely many, same10�13 or different14�16 options. In a system with

infinitely many attractors,10�16,21 one cannot determine which state
the system ultimately evolves to. Therefore, the abundant dynamics
in the initial value space become disastrous when they are not
controllable. There has been an attempt to determine all kinds of
regimes for multistability, so as to gain enough experience to con-
trol these regimes. On the other hand, the abundant dynamics
in the parameter domain cannot be easily applied in engineering
applications since each switch from one state to another requires
cumbersome parameter resetting. Even in the case of chaos gener-
ation, when chaotic dynamics are beneficial, the deviations of the
parameters make them difficult to produce expected behaviors such
as desirable oscillations.

Multistability comes from different mechanisms. Some are
caused by broken symmetry1�3 or conditional symmetry,4,5 and some
others are caused by hysteresis17,18 or time delay.19,20 Some multi-
stabilities are caused by dimension redundancy22 or by periodical
offset boosting induced by initial conditions.10�13 Since an attractor
is located in a limited phase space of a certain size,23 one has the
opportunity to arrange many attractors according to their basins of
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FIG. 1. Dynamics of system (6) with
a D 0.22 and m D 1, with initial condi�
tions (�1, 1, �1): (a) bifurcation diagram
(cross section z D 2) and (b) Lyapunov
exponents.

attraction.24 Thus, it is meaningful to find a way to edit these typi-
cal dynamics in the parameter domain and put them into a unified
combination of parameters. In other words, one would expect to be
able to select the key dynamics and arrange them as multiple states
in the domain of initial values. In this paper, we propose an effec-
tive approach for dynamics editing, by which typical solutions in the
parameter domain are collected in the initial value domain with any
desired distances in any flexible order. In Sec. II, the principle and
methodology of dynamics editing are discussed in detail. In Sec. III,
an example is shown for clear demonstration. Finally, conclusion
and discussion are given in the last section.

II. DYNAMICS EDITING

It is known that a direct offset boosting in any dimension does
not change the dynamics of a system but shifts the attractor to a
different position. Those chaotic systems with a pair of attractors
in conditional symmetry5 or with doubling attractors13 accomplish
offset boosting using a piecewise-linear function, where the polar-
ity balance is restored by applying internal or external polarity
inverses from other variables or attaching new signum functions.
These self-reproducing systems25,26 increase similar dynamics with
offset boosting induced by certain combinations of trigonometric
functions. The fact is that trigonometric functions are approximately
equivalent to piecewise-linear functions. All these observations pro-
vide some hints for dynamics editing. In the new approach, it is
reasonable to expect that different dynamics can be extracted by
using an appropriate piecewise-linear function. It turned out that
this is indeed possible.

TABLE I. Typical dynamics genes of system (6) with m D 1 governed by r.

Cases Parameters
Editing

elements Lyapunov exponents DKY

Xa r D 1 Chaotic (0.0716, 0, �1.6697) 2.0429
Xb r D 1.7 Cycle-3 (0, �0.0563, �1.5687) 1
Xc r D 2 Chaotic (0.0684, 0, �1.6084) 2.0425
Xd r D 3 Cycle-4 (0, �0.2223, �1.2732) 1
Xe r D 5 Cycle-2 (0, �0.3132, �1.1325) 1

Theorem 2.1. Consider the dynamical system

8
>>>><

>>>>:

Px1 D f1.x1, x2, � � � , xj�1, rixj, xjC1, : : : xn/,
Px2 D f2.x1, x2, � � � , xj�1, rixj, xjC1, : : : xn/,
...
Pxn D fn.x1, x2, � � � , xj�1, rixj, xjC1, : : : xn/,

(1)

where ri is a constant, ri 6D 0, i D 1, 2, . . . , k. Assume that system (1)
has attractors Oi with a basin of attraction ;i, and suppose that there
exists a positive constant d and for any point .x0

1, x0
2, : : : , x0

n/T 2 ;i,
jx0

jj � d. Then, the following system

8
>>>><

>>>>:

Px1 D f1.x1, x2, : : : , xj�1, h.xj/, xjC1, : : : xn/
Px2 D f2.x1, x2, : : : , xj�1, h.xj/, xjC1, : : : xn/
...
Pxn D fn.x1, x2, : : : , xj�1, h.xj/, xjC1, : : : xn/

(2)

collects all the attractors Oi (i D 1, 2, . . . , k), forming the desired mul-
tistability, in which when the initial value in the dimension xj satis-
fies .2i � 3/d � xj < .2i � 1/d, system (2) has the same attractor as

FIG. 2. The designed piecewise-linear function of Eq. (7) for dynamics editing in
dimension x.
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FIG. 3. Edited dynamics in system (6)
with a D 0.22, m D 1, when rx is replaced
by f (x) with initial conditions (2dn, 1, �1),
d D 3, n D 0, 1, 2, 3, and 4, represented
by green, yellow, magenta, blue, and red,
respectively: (a) x�z plane and (b) x�y
plane.

Oi. The designed piecewise-linear function h(xj) in Eq. (2) is

h.xj/ D

8
>>>>><

>>>>>:

r1xj, �d � xj < d,
r2.xj � 2d/, d � xj < 3d,
ri.xj � 2.i � 1/d/, .

...
2 i � 3/d � xj < .2i � 1/d,

rk.xj � 2.m � 1/d/, .
...
2k � 3/d � xj < .2k � 1/d,

0, else,

(3)

which can be used for dynamics editing.
Proof 2.1. Suppose that the system variable x satisfies

.2i � 3/d � xj < .2i � 1/d (i D 1, 2, . . . , k) and make a variable
substitution in system (2) as follows:

8
>>>>>>>>>><

>>>>>>>>>>:

y1 D x1,
y2 D x2,
...
yj�1 D xj�1,
yj D xj � 2.i � 1/d,
yjC1 D xjC1,
: : :
yn D xn.

(4)

Then, system (2) becomes
8
>>>><

>>>>:

Py1 D f1.y1, y2, : : : , yj�1, riyj, yjC1, : : : yn/,
Py2 D f2.y1, y2, : : : , yj�1, riyj, yjC1, : : : yn/,
...
Pyn D fn.y1, y2, : : : , yj�1, riyj, yjC1, : : : yn/.

(5)

System (5) has the same solution as system (1) when jyjj � d;
therefore, system (2) has the same attractor Oi in the regions of
.2i � 3/d � xj < .2i � 1/d (i D 1, 2, . . . , k). In different segments of
function (3), the inherited parameter vector [r1, r2, . . . , rk] changes
the sequence of the coexisting attractors. Thus, the coexisting attrac-
tors in system (2) can be edited by the piecewise-linear function (3)
that, similarly to a dynamic selector, completes the dynamics editing
by selecting the vector [r1, r2, . . . , rk].

For a clear demonstration, in the following, define the
piecewise-linear function as a dynamic selector and define the
selected attractors O1, O2, : : : , Om as the editing elements. Conse-
quently, the process of collecting those attractors together in the
phase space in a certain designed order is precisely the behavior of
dynamics editing.

The procedure in realizing dynamics editing has five steps:

� Step 1. Bifurcation analysis

Full dynamic observations can be obtained from the bifurcation dia-
gram when a parameter varies. Unlike other bifurcation analyses,
here the parameter selection is completed by a variable substitution.

� Step 2. Editing element selection

Typical dynamics are selected as editing elements. For a dynamical
system, it is necessary to track the dominant chaotic motions or peri-
odic oscillations. Therefore, this step is essentially state sampling in
the parameter domain, by which the selected discretized states are
prepared for later dynamics editing.

FIG. 4. Edited dynamics in system (6)
with a D 0.22, m D 1, when rx is replaced
by function (8) with initial conditions
(2dn, 1, �1), d D 3, n D 0, �1, and 1, rep�
resented by green, cyan, and red, respec�
tively: (a) x�z plane and (b) x�y plane.
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FIG. 5. Dynamics of system (6) with
a D 0.22 and r D 1, from initial conditions
(�1, 1, �1): (a) bifurcation diagram
(cross section z D 0) and (b) Lyapunov
exponents.

� Step 3. Dynamics editing design

After the above dynamics elements are obtained, it needs to con-
sider which dimension to set them in. There are many parameters in
editing the dynamics, including the dimension, order, density, and
even polarity. Before any process of dynamics editing, a clear edit
file including these parameters is necessary.

� Step 4. Dynamic selector design

According to the selected dynamics and the editing file, a piecewise-
linear function is designed as a dynamic selector. The selected
dynamics elements will scatter in the phase space based on offset
boosting arranged by the dynamic selector. The slopes of the seg-
ments of the piecewise-linear function and the interval between the
segments in the dynamic selector are then designed according to the
dynamics editing file and are applied for attractor organization in
the sense of execution.

� Step 5. Edited dynamics output

According to the dimension, manifold, order, density, and even
polarity of the selected dynamics elements in the attractor chain, a
suitable combination of initial conditions is necessary for outputting
the edited dynamics.

III. EXAMPLE OF DYNAMICS EDITING

Consider the chaotic system VB627 described by the following
equation:

8
<

:

Px D 1 � myz,
Py D az2 � myz,
Pz D rx.

(6)

TABLE II. Typical dynamics genes of system (6) with r D 1 governed by m.

Cases Parameters
Editing

elements Lyapunov exponents DKY

Ya m D 0.4 Cycle-2 (0, �0.1130, �0.4518) 1
Yb m D 1 Chaotic (0.0716, 0, �1.6697) 2.0429
Yc m D 2.4 Cycle-3 (0, �0.0027, �3.9197) 1
Yd m D 6 Chaotic (0.0296, 0, �9.4904) 2.0031
Ye m D 8 Cycle-4 (0, �0.0064, �12.6474) 1

When a D 0.22, r D 1, and m D 1, system (6) exhibits chaos with
Lyapunov exponents (0.0717, 0, �1.6646) and the corresponding
Kaplan�Yorke dimension DKY D 2.0431 from initial conditions (�1,
1, �1). Here, rx and my are selected for dynamics editing in the
dimensions of x and y, and the newly introduced parameters r and
m are used for bifurcation analysis to observe the typical dynamics
in this system.

A. Dynamics editing in the dimension of x
To find the typical dynamics (or dynamics of interest) con-

trolled by the parameter r, let r vary in the region of [0.2, 10.2]. Then,
system (6) exhibits an inverse-period-doubling process, as shown in
Fig. 1. The chaotic and periodic solutions separated by periodic win-
dows comprise the personalized genes of system (6), as shown in
Table I. In the following, these dynamics are selected as basic ele-
ments and are expected to appear in the phase space simultaneously
in an order of the design.

According to Theorem 2.1, a dynamic selector can be designed
as a piecewise-linear function. To perform dynamics editing in the

FIG. 6. The designed piecewise-linear function of Eq. (9) for dynamics editing in
the dimension of y.
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FIG. 7. Edited dynamics in system (6)
with a D 0.22, r D 1, when my is replaced
by g(y) with initial conditions (�1, 2dn,
�1), d D 5, n D 0, 1, 2, 3, and 4, repre�
sented by green, yellow, magenta, blue,
and red, respectively: (a) y�z plane and (b)
y�x plane.

dimension of x, the following function is used:

f.x/ D

8
>>>>>>><

>>>>>>>:

k1x, �d � x < d,
k2.x � 2d/, d � x < 3d,
k3.x � 4d/, 3d � x < 5d,
k4.x � 6d/, 5d � x < 7d,
k5.x � 8d/, 7d � x < 9d,
0, else.

(7)

Here, the selected slopes k1 D 1, k2 D 1.7, k3 D 2, k4 D 3, and k5 D 5
are applied for extracting the desired attractors as shown in Table I.
The curve of the dynamic selector (7) is shown in Fig. 2.

Note that the distance between two selected attractors can be
modified by the intervals between two segments, but this distance
should be larger than the largest attractor in the dimension of x.
Here, we select d D 3 for arranging coexisting attractors without any
mutual interference. As predicted, the attractors in system (6) when
the parameters r D 1, 1.7, 2, 3, and 5 are implanted in the domain of
the initial value, which are safely extracted by the initial conditions
around the center of each segment of the piecewise linear function
f(x), as shown in Fig. 3. The distance between each segment is 2d,
and therefore, the coexisting attractors are evenly distributed in the
dimension of x.

The order of coexisting attractors can also be realized by modi-
fying the vector [k1, k2, k3, k4, and k5]. Furthermore, the number and
even the types of coexisting attractors can be completely determined

by the selection of the dynamic selector. Suppose that the dynamic
selector is designed as

f.x/ D

8
>><

>>:

k1x, �d � x < d,
k2.x � 2d/, d � x < 3d,
k3.x C 2d/, �3d � x < �d,
0, else.

(8)

Here, a different combination is selected for the segments of
the piecewise-linear function, and the parameters are selected
as k1 D k2 D k3 D 1; consequently, three self-reproducing chaotic
attractors appear, as shown in Fig. 4.

B. Dynamics editing in the dimension of y
The above dynamics editing procedure can be implemented in

other dimensions. Now, consider dynamics editing in the dimension
of y.

Like the process in the dimension of x, starting from the bifur-
cation analysis, as shown in Fig. 5, typical attractors under the
control of parameter m are selected as editing elements for editing,
as listed in Table II. The selected dynamics also include chaotic oscil-
lations and limit cycles. Then, a suitable dynamic selector is designed

FIG. 8. Edited dynamics in system (6)
with a D 0.22, when rx is replaced by
f (x) combined with the substitution in the
y dimension g(y), with s2 D �1, d D 3,
initial conditions are (2dn, 10, �1), n D 0,
1, 2, 3, and 4 for green, yellow, magenta,
blue, and red, respectively: (a) x�z plane
and (b) x�y plane.
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based on Eq. (9), with the curve shown in Fig. 6,

g.y/ D

8
>>>>>><

>>>>>>:

s1y, 0 � y < 2d,
s2.y � 2d/, 2d � y < 4d,
s3.y � 4d/, 4d � y < 6d,
s4.y � 6d/, 6d � y < 8d,
s5.y � 8d/, 8d � y < 10d,
0, else.

(9)

To extract the desired attractors, let the slope of each segment
of the piecewise-linear function be equal to the selected parame-
ter m, i.e., s1 D 0.4, s2 D 1, s3 D 2.4, s4 D 6, and s5 D 8. Set a suitable
length of offset boosting d D 5 to distribute those coexisting attrac-
tors without any interference. Then, those coexisting attractors are
edited in the dimension of y accordingly, as shown in Fig. 7. Like the
above analysis, in this process, the dynamics editing can be modified
by the selection of parameter m, including the number and the value,
in which the number determines how many attractors are edited,
and the value determines what kind of dynamics is involved.

System (6) also has a special structure for hosting condi-
tional symmetry from 2D offset boosting.27 Therefore, through the
application of a 2D dynamic selector, the coexisting attractors of
conditional symmetry can be edited in two dimensions.

Now, for constructing the new polarity balance, the coeffi-
cients in Eq. (7) are set as k1 D �1, k2 D �1.7, k3 D �2, k4 D �3,
and k5 D �5, and the coefficient s2 in Eq. (9) is set as s2 D �1; the
attractors of conditional symmetry are constructed accordingly and
are edited in the phase space, as shown in Fig. 8. Note that com-
pared with Fig. 3, now two polarity reverses in the functions f(x) and
g(y) from the coefficients lead to a polarity reverse in the z dimen-
sion. Additionally, note that all the coexisting attractors are located
above y D 10 since the center of the segment with a slope of s2 is
10. Other coexisting attractors can be found by selecting different
combinations of slopes for k and s, and they agree with the dynam-
ics in system (6) when the corresponding parameters are substituted
accordingly.

IV. CONCLUSIONS AND DISCUSSION

A dynamical system has infinitely many different types of
attractors in the phase space over the parameter domain, but many
of them are typical elements representing their features. The appli-
cation of a piecewise-linear function as a dynamic selector for
dynamics editing can help extract these characteristic attractors and
arrange them in the initial condition domain. This dynamics editing
method uses offset boosting in principle. Through the windows of
the initial conditions, the edited dynamics can be observed clearly;
therefore, one can extract any desired dynamics from any complex
nonlinear system rather than modifying their parameters. The exist-
ing attractors with conditional symmetry can also be extracted by
a piecewise-linear function with a negative slope, if the system can
retrieve its polarity balance owing to its special structure. Moreover,
the self-reproducing attractors can be realized by a piecewise-linear
function with a unified slope. By adding extra segments of piece-
wise function, accordingly the number of coexisting attractors gets
increased in a sense as like that is proven in the revised Chua’s circuit
model for a third scroll at the origin.28

Furthermore, dynamics editing has great potential in system
stabilization. Through dynamics editing, the underlying system can
be drawn to any desired state by an appropriate piecewise-linear
function, which as a dynamic selector edits the dynamics of the sys-
tem. It is believed that the dynamic selector can be used as a new key
for chaos-based secure communication systems, especially for those
that are fundamentally based on complex dynamics. In addition, it
is believed that memristive systems with various types of multistable
states are closely related to a new type of nonlinear editing, which
deserves further exploration in the future.
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