Associating electroencephalogram (EEG) with physical and analytical behavior of human
人類的腦電波和其肢體行為及分析表現之聯繫
Student thesis: Master's Thesis
Author(s)
Related Research Unit(s)
Detail(s)
Awarding Institution | |
---|---|
Supervisors/Advisors |
|
Award date | 4 Oct 2010 |
Link(s)
Permanent Link | https://scholars.cityu.edu.hk/en/theses/theses(e4cdb405-ce7d-4c9b-8db6-a79d754d6730).html |
---|---|
Other link(s) | Links |
Abstract
Analysis of associating human electroencephalogram (EEG) with physical behavior
(motion of the hand in 3D space) and analytical behavior (thinking and decision-making)
are presented. The motivation behind the association analysis is to map brain activity
with real world physiological and analytical behavior using non-invasive EEG when
subjects are interacting with behavioral tasks. This work is divided into two major parts.
In the first part, the association between cortical EEG and physiological behavior of
human is analyzed by predicting ongoing 3D motion. In the second part, the association
of frontal EEG with analytical behavior is analyzed by discriminating and identifying
different cognitive task from EEG signal. We proposed 3D motion prediction by combining
past EEG and motion with current EEG using Cross Coherence as feature
extractor and Support Vector Regression (SVR) as predictive model. In case that the
current EEG is not available in real time, we have used the predicted current EEG
instead of actual signal to predict the motion. The prediction of the current EEG from the
past EEG is achieved by combing temporal and frequency based analysis with Artificial
Neural Network Regression. Our analysis suggested that electrophysiological or biomechanical
signals alone do not optimally predict current hand motion in 3D space. Rather,
combining past with current EEG and the past motion provides the best performance in
motion prediction. On the other hand, the associations of EEG signals are studied with
the analytical behavior such, as motor imagery task (thinking of moving physiological
parts of body, e.g. hand, foot) and decision process (deciding which image gives more
reward). Brain dynamics were analyzed using Event Related Potentials (ERPs) of noninvasive
EEG signals to identify the pattern of brain activity for actions with, and
without analytical behavior. We proposed a method to detect brain activity pattern
during analytical behavior by examining motor imagery and non-motor imagery task as
well as reference (no decision) and decision-making patterns. Classification performances
were analyzed and brain regions underlying analytical behavior were identified.
The ultimate goal of the physiological and analytical association analysis is to improve
non-invasive neural prostheses for realistic, smooth and large degree of freedom movement
of the body part such as the hand.
- Human behavior, Analysis, Data processing, Electroencephalography