Zonal model for predicting contaminant distribution in stratum ventilated rooms

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

6 Scopus Citations
View graph of relations

Detail(s)

Original languageEnglish
Article numbere13061
Journal / PublicationIndoor Air
Volume32
Issue number6
Online published13 Jun 2022
Publication statusPublished - Jun 2022

Abstract

Accurate prediction of the non-uniform contaminant distribution under stratum ventilation (SV) is crucial for optimal design for reducing contaminant exposure risks. Compared with experiments and computational fluid dynamics, zonal models are convenient to implement. This study proposes a zonal model for predicting dynamic non-uniform contaminant distribution in the stratum ventilated room. The zoning method is based on the unique airflow pattern under SV, and the room is divided into the jet zone, entrainment zone, and the mixing zone. The interzonal airflow rate is derived from the profile of the supply air jet. The results show that the proposed zonal model can predict the dynamic contaminant distribution in the stratum ventilated room. Compared with the experimental measurement, the predictions show good accuracy with the mean absolute error (MAE) at 0.51–2.36 ppm and root mean squared error (RMSE) at 0.64–2.53 ppm. The error of the proposed zonal model is influenced by the degree of mixing in each subzone. The proposed zonal model shows better accuracy for non-uniform air distribution under stratum ventilation compared with the existing zonal model.

Research Area(s)

  • contaminant distribution, dynamic model, indoor air quality, non-uniform environment, stratum ventilation, zonal model