Zinc source differentiation in hydrothermal vent mollusks : Insight from Zn isotope ratios

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number145653
Journal / PublicationScience of the Total Environment
Volume773
Online published5 Feb 2021
Publication statusPublished - 15 Jun 2021

Abstract

Hydrothermal vent represents an extreme environment where metal-enriched fluids are in contact with chemosymbiotic animals. In the present study, Zn isotopic compositions were determined in multiple tissues of three dominant hydrothermal vent mollusks (the mussel Bathymodiolus marisindicus and two gastropods Chrysomallon squamiferum and Gigantopelta aegis) collected from a hydrothermal vent field (Southwest Indian Ridge in the Indian Ocean). We found approximately 1.78‰ differences in the δ66Zn values among the three vent mollusks despite of their similar range of Zn concentrations. The significant variation in the δ66Zn values was considered to be indicative of different Zn uptake sources among the three species as a result of their morphological adaptations. Zinc uptake associated with symbiotic activities may be more relevant in the vent gastropods, whereas Zn uptake from hydrothermal fluids during filter-feeding may also play a role in the vent mussels. However, no significant difference in δ66Zn values was observed among tissues of any of the mollusks, showing the absence of Zn isotope fractionation during internal Zn transport. Our results demonstrated that variable Zn uptake pathways existed among different hydrothermal vent mollusks and could be differentiated by determining the Zn isotopic compositions in their tissues. We also highlight that Zn isotope ratios can be used to track Zn sources to the vent mollusks.

Research Area(s)

  • Metal source, Symbiotic activity, Vent mollusks, Zn isotope ratio