Wide-Area Crowd Counting : Multi-view Fusion Networks for Counting in Large Scenes
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1938–1960 |
Number of pages | 23 |
Journal / Publication | International Journal of Computer Vision |
Volume | 130 |
Issue number | 8 |
Online published | 30 May 2022 |
Publication status | Published - Aug 2022 |
Link(s)
Abstract
Crowd counting in single-view images has achieved outstanding performance on existing counting datasets. However, single-view counting is not applicable to large and wide scenes (e.g., public parks, long subway platforms, or event spaces) because a single camera cannot capture the whole scene in adequate detail for counting, e.g., when the scene is too large to fit into the field-of-view of the camera, too long so that the resolution is too low on faraway crowds, or when there are too many large objects that occlude large portions of the crowd. Therefore, to solve the wide-area counting task requires multiple cameras with overlapping fields-of-view. In this paper, we propose a deep neural network framework for multi-view crowd counting, which fuses information from multiple camera views to predict a scene-level density map on the ground-plane of the 3D world. We consider three versions of the fusion framework: the late fusion model fuses camera-view density map; the naive early fusion model fuses camera-view feature maps; and the multi-view multi-scale early fusion model ensures that features aligned to the same ground-plane point have consistent scales. A rotation selection module further ensures consistent rotation alignment of the features. We test our 3 fusion models on 3 multi-view counting datasets, PETS2009, DukeMTMC, and a newly collected multi-view counting dataset containing a crowded street intersection. Our methods achieve state-of-the-art results compared to other multi-view counting baselines.
Research Area(s)
- Crowd counting, Multi-view, Wide-area, DNNs fusion, Scale selection, Rotation selection, DETECTING PEDESTRIANS, PEOPLE, MULTIPLE
Citation Format(s)
Wide-Area Crowd Counting: Multi-view Fusion Networks for Counting in Large Scenes. / Zhang, Qi; Chan, Antoni B.
In: International Journal of Computer Vision, Vol. 130, No. 8, 08.2022, p. 1938–1960.
In: International Journal of Computer Vision, Vol. 130, No. 8, 08.2022, p. 1938–1960.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review