Abstract
Contrastive visual pretraining based on the instance discrimination pretext task has made significant progress. Notably, recent work on unsupervised pretraining has shown to surpass the supervised counterpart for finetuning downstream applications such as object detection and segmentation. It comes as a surprise that image annotations would be better left unused for transfer learning. In this work, we investigate the following problems: What makes instance discrimination pretraining good for transfer learning? What knowledge is actually learned and transferred from these models? From this understanding of instance discrimination, how can we better exploit human annotation labels for pretraining? Our findings are threefold. First, what truly matters for the transfer is low-level and mid-level representations, not high-level representations. Second, the intra-category invariance enforced by the traditional supervised model weakens transferability by increasing task misalignment. Finally, supervised pretraining can be strengthened by following an exemplar-based approach without explicit constraints among the instances within the same category. © 2021 ICLR 2021 - 9th International Conference on Learning Representations. All rights reserved.
| Original language | English |
|---|---|
| Title of host publication | ICLR 2021 - 9th International Conference on Learning Representations |
| Publisher | International Conference on Learning Representations, ICLR |
| Publication status | Published - 4 May 2021 |
| Event | 9th International Conference on Learning Representations (ICLR 2021) - Virtual Duration: 3 May 2021 → 7 May 2021 https://iclr.cc/virtual/2021/index.html https://openreview.net/group?id=ICLR.cc/2021 |
Publication series
| Name | ICLR - International Conference on Learning Representations |
|---|
Conference
| Conference | 9th International Conference on Learning Representations (ICLR 2021) |
|---|---|
| Period | 3/05/21 → 7/05/21 |
| Internet address |