Weakly-Supervised 3D Medical Image Segmentation using Geometric Prior and Contrastive Similarity

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)2936-2947
Journal / PublicationIEEE Transactions on Medical Imaging
Volume42
Issue number10
Online published24 Apr 2023
Publication statusPublished - Oct 2023

Abstract

Medical image segmentation is almost the most important pre-processing procedure in computer-aided diagnosis but is also a very challenging task due to the complex shapes of segments and various artifacts caused by medical imaging, (i.e., low-contrast tissues, and non-homogenous textures). In this paper, we propose a simple yet effective segmentation framework that incorporates the geometric prior and contrastive similarity into the weakly-supervised segmentation framework in a loss-based fashion. The proposed geometric prior built on point cloud provides meticulous geometry to the weakly-supervised segmentation proposal, which serves as better supervision than the inherent property of the bounding-box annotation (i.e., height and width). Furthermore, we propose the contrastive similarity to encourage organ pixels to gather around in the contrastive embedding space, which helps better distinguish low-contrast tissues. The proposed contrastive embedding space can make up for the poor representation of the conventionally-used gray space. Extensive experiments are conducted to verify the effectiveness and the robustness of the proposed weakly-supervised segmentation framework. The proposed framework are superior to state-of-the-art weakly-supervised methods on the following publicly accessible datasets: LiTS 2017 Challenge, KiTS 2021 Challenge and LPBA40. We also dissect our method and evaluate the performance of each component. © 2023 IEEE.

Research Area(s)

  • Annotations, Contrastive Similarity, Geometric Prior, Head, Image segmentation, Imaging, Medical Image Segmentation, Point Cloud, Point cloud compression, Shape, Training, Weakly-supervised Segmentation