Weakly nonlinear long waves in a prestretched Blatz-Ko cylinder : Solitary, kink and periodic waves

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

8 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)761-772
Journal / PublicationWave Motion
Volume48
Issue number8
Publication statusPublished - Dec 2011

Abstract

This paper studies nonlinear waves in a prestretched cylinder composed of a Blatz-Ko material. Starting from the three-dimensional field equations, two coupled PDEs for modeling weakly nonlinear long waves are derived by using the method of coupled series and asymptotic expansions. Comparing with some other existing models in literature, an important feature of these equations is that they are consistent with traction-free surface conditions asymptotically. Also, the material nonlinearity is kept to the third order. As these two PDEs are quite complicated, the attention is focused on traveling waves, for which a first-order system of ODEs are obtained. We use the technique of dynamical systems to carry out the analysis. It turns out that the system is three parameters (the prestretch, the propagating speed and an integration constant) dependent and there are totally seven types of phase planes which contain trajectories representing bounded traveling waves. The parametric conditions for each phase plane are established. A variety of solitary and periodic waves are found. An important finding is that kink waves can propagate in a Blatz-Ko cylinder. We also find that one type of periodic waves has an interesting feature in the profile slope. Analytical expressions for all bounded traveling waves are obtained. © 2011 Elsevier B.V.

Research Area(s)

  • Asymptotic methods, Blatz-Ko material, Cylinder/rod, Kink waves, Phase-plane analysis, Solitary waves