Wavelength dependent transmission in W-type plastic optical fibers with graded index core distribution

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number167775
Journal / PublicationOptik
Volume246
Online published8 Aug 2021
Publication statusPublished - Nov 2021

Abstract

This paper investigates the wavelength dependence of the equilibrium mode distribution (EMD) and steady state distribution (SSD) in W-type plastic optical fibers (POFs) with graded index (GI) core distribution for parametrically varied width of the fiber's intermediate optical layer and refractive index of the outer cladding. The numerical solution of the time-independent power flow equation is used to determine the transmission characteristics of the W-type GI POF. We demonstrated that the coupling length Lc required to achieve an EMD in W-type GI POF is shorter than the length determined experimentally for the original SC GI POF at 633 nm. We also demonstrated that as the wavelength increases, the EMD and steady-state distribution (SSD) are achieved at shorter W-type GI POF lengths. This is explained by the increase in leaky mode losses as wavelength increases. This makes it easier to tailor W-type GI POFs to a specific application at different wavelengths.

Research Area(s)

  • Equilibrium mode distribution, Graded index optical fiber, Power flow equation, Steady state distribution, W-type plastic optical fiber

Bibliographic Note

Full text of this publication does not contain sufficient affiliation information. With consent from the author(s) concerned, the Research Unit(s) information for this record is based on the existing academic department affiliation of the author(s).