Vlasov-Poisson-Landau (Fokker-Planck) 方程解的大时间行为

Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Author(s)

  • 李海梁
  • 孙家伟
  • 杨彤
  • 钟明溁

Related Research Unit(s)

Detail(s)

Original languageChinese (Simplified)
Pages (from-to)981-1004
Journal / Publication中国科学:数学
Volume46
Issue number7
Online published30 May 2016
Publication statusPublished - 2016

Abstract

本文考虑 Vlasov-Poisson-Fokker-Planck (VPFP) 方程和 Vlasov-Poisson-Landau (VPL) 方程的初值问题, 给出了在平衡态附近的线性化的 VPFP 方程和 VPL 方程的谱分析和半群估计, 并且给出了非线性问题解的最佳衰减速度. 本文证明当初值是整体 Maxwell 的小扰动时, VPFP 方程的解以指数衰减速度收敛到平衡态, 而 VPL 方程的解以代数速度 (1 + t)−1/4 收敛到平衡态.
In this paper, we consider the initial value problems for Vlasov-Poisson-Fokker-Planck (VPFP) equations and Vlasov-Poisson-Landau (VPL) equations. We give the spectrum analysis and semigroup estimates on the linearized VPFP equations and VPL equations around their equilibrium states and show the optimal convergence rates of global solution to nonlinear problems. We show that the solution to VPFP equations tends to the equilibrium state at the exponential convergence rate, the solution to VPL equations tends to the equilibrium state at the algebraic convergence rate (1+t)−1/4 when initial values are small perturbations of global Maxwellian.

Research Area(s)

  • Vlasov-Poisson-Fokker-Planck 方程, Vlasov-Poisson-Landau 方程, 谱分析, 最佳衰减率, Vlasov-Poisson-Fokker-Planck equations, Vlasov-Poisson-Landau equations, spectrum analysis, optimal convergence rates

Citation Format(s)

Vlasov-Poisson-Landau (Fokker-Planck) 方程解的大时间行为. / 李海梁; 孙家伟; 杨彤 et al.

In: 中国科学:数学, Vol. 46, No. 7, 2016, p. 981-1004.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review