Vlasov-Poisson-Landau (Fokker-Planck) 方程解的大时间行为

Translated title of the contribution: Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations

李海梁, 孙家伟, 杨彤*, 钟明溁

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

Abstract

In this paper, we consider the initial value problems for Vlasov-Poisson-Fokker-Planck (VPFP) equations and Vlasov-Poisson-Landau (VPL) equations. We give the spectrum analysis and semigroup estimates on the linearized VPFP equations and VPL equations around their equilibrium states and show the optimal convergence rates of global solution to nonlinear problems. We show that the solution to VPFP equations tends to the equilibrium state at the exponential convergence rate, the solution to VPL equations tends to the equilibrium state at the algebraic convergence rate (1+t)−1/4 when initial values are small perturbations of global Maxwellian.
Translated title of the contributionLarge time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations
Original languageChinese (Simplified)
Pages (from-to)981-1004
Journal中国科学:数学
Volume46
Issue number7
Online published30 May 2016
DOIs
Publication statusPublished - 2016

Research Keywords

  • Vlasov-Poisson-Fokker-Planck 方程
  • Vlasov-Poisson-Landau 方程
  • 谱分析
  • 最佳衰减率
  • Vlasov-Poisson-Fokker-Planck equations
  • Vlasov-Poisson-Landau equations
  • spectrum analysis
  • optimal convergence rates

Fingerprint

Dive into the research topics of 'Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations'. Together they form a unique fingerprint.

Cite this