Visual-tactile Sensing for Real-time Liquid Volume Estimation in Grasping

Fan Zhu, Ruixing Jia, Lei Yang, Youcan Yan, Zheng Wang*, Jia Pan, Wenping Wang

*Corresponding author for this work

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review

5 Citations (Scopus)

Abstract

We propose a deep visuo-tactile model for real-time estimation of the liquid inside a deformable container in a proprioceptive way. We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor without any extra sensor calibrations. The robotic system is well controlled and adjusted based on the estimation model in real time. The main contributions and novelties of our work are listed as follows: 1) Explore a proprioceptive way for liquid volume estimation by developing an end-to-end predictive model with multi-modal convolutional networks, which achieve a high precision with an error of ~ 2 ml in the experimental validation. 2) Propose a multi-task learning architecture which comprehensively considers the losses from both classification and regression tasks, and comparatively evaluate the performance of each variant on the collected data and actual robotic platform. 3) Utilize the proprioceptive robotic system to accurately serve and control the requested volume of liquid, which is continuously flowing into a deformable container in real time. 4) Adaptively adjust the grasping plan to achieve more stable grasping and manipulation according to the real-time liquid volume prediction.
Original languageEnglish
Title of host publication2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
PublisherIEEE
Pages12542-12549
ISBN (Electronic)978-1-6654-7927-1
DOIs
Publication statusPublished - 2022
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: 23 Oct 202227 Oct 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period23/10/2227/10/22

Fingerprint

Dive into the research topics of 'Visual-tactile Sensing for Real-time Liquid Volume Estimation in Grasping'. Together they form a unique fingerprint.

Cite this