Video summarization and scene detection by graph modeling

Chong-Wah Ngo, Yu-Fei Ma, Hong-Jiang Zhang

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

317 Citations (Scopus)

Abstract

In this paper, we propose a unified approach for video summarization based on the analysis of video structures and video highlights. Two major components in our approach are scene modeling and highlight detection. Scene modeling is achieved by normalized cut algorithm and temporal graph analysis, while highlight detection is accomplished by motion attention modeling. In our proposed approach, a video is represented as a complete undirected graph and the normalized cut algorithm is carried out to globally and optimally partition the graph into video clusters. The resulting clusters form a directed temporal graph and a shortest path algorithm is proposed to efficiently detect video scenes. The attention values are then computed and attached to the scenes, clusters, shots, and subshots in a temporal graph. As a result, the temporal graph can inherently describe the evolution and perceptual importance of a video. In our application, video summaries that emphasize both content balance and perceptual quality can be generated directly from a temporal graph that embeds both the structure and attention information.
Original languageEnglish
Pages (from-to)296-304
JournalIEEE Transactions on Circuits and Systems for Video Technology
Volume15
Issue number2
DOIs
Publication statusPublished - Feb 2005

Research Keywords

  • Attention model
  • Normalized cut
  • Scene modeling
  • Video summarization

Fingerprint

Dive into the research topics of 'Video summarization and scene detection by graph modeling'. Together they form a unique fingerprint.

Cite this