TY - JOUR
T1 - Van der Waals negative capacitance transistors
AU - Wang, Xiaowei
AU - Yu, Peng
AU - Lei, Zhendong
AU - Zhu, Chao
AU - Cao, Xun
AU - Liu, Fucai
AU - You, Lu
AU - Zeng, Qingsheng
AU - Deng, Ya
AU - Zhu, Chao
AU - Zhou, Jiadong
AU - Fu, Qundong
AU - Wang, Junling
AU - Huang, Yizhong
AU - Liu, Zheng
PY - 2019
Y1 - 2019
N2 - The Boltzmann distribution of electrons sets a fundamental barrier to lowering energy consumption in metal-oxide-semiconductor field-effect transistors (MOSFETs). Negative capacitance FET (NC-FET), as an emerging FET architecture, is promising to overcome this thermionic limit and build ultra-low-power consuming electronics. Here, we demonstrate steep-slope NC-FETs based on two-dimensional molybdenum disulfide and CuInP2S6 (CIPS) van der Waals (vdW) heterostructure. The vdW NC-FET provides an average subthreshold swing (SS) less than the Boltzmann’s limit for over seven decades of drain current, with a minimum SS of 28 mV dec−1. Negligible hysteresis is achieved in NC-FETs with the thickness of CIPS less than 20 nm. A voltage gain of 24 is measured for vdW NC-FET logic inverter. Flexible vdW NC-FET is further demonstrated with sub-60 mV dec−1 switching characteristics under the bending radius down to 3.8 mm. These results demonstrate the great potential of vdW NC-FET for ultra-low-power and flexible applications. © The Author(s) 2019.
AB - The Boltzmann distribution of electrons sets a fundamental barrier to lowering energy consumption in metal-oxide-semiconductor field-effect transistors (MOSFETs). Negative capacitance FET (NC-FET), as an emerging FET architecture, is promising to overcome this thermionic limit and build ultra-low-power consuming electronics. Here, we demonstrate steep-slope NC-FETs based on two-dimensional molybdenum disulfide and CuInP2S6 (CIPS) van der Waals (vdW) heterostructure. The vdW NC-FET provides an average subthreshold swing (SS) less than the Boltzmann’s limit for over seven decades of drain current, with a minimum SS of 28 mV dec−1. Negligible hysteresis is achieved in NC-FETs with the thickness of CIPS less than 20 nm. A voltage gain of 24 is measured for vdW NC-FET logic inverter. Flexible vdW NC-FET is further demonstrated with sub-60 mV dec−1 switching characteristics under the bending radius down to 3.8 mm. These results demonstrate the great potential of vdW NC-FET for ultra-low-power and flexible applications. © The Author(s) 2019.
UR - http://www.scopus.com/inward/record.url?scp=85068899499&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85068899499&origin=recordpage
U2 - 10.1038/s41467-019-10738-4
DO - 10.1038/s41467-019-10738-4
M3 - RGC 21 - Publication in refereed journal
C2 - 31292435
SN - 2041-1723
VL - 10
JO - Nature Communications
JF - Nature Communications
M1 - 3037
ER -