Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2 quantum Hall systems

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

60 Scopus Citations
View graph of relations

Author(s)

  • Rui-Lin Chu
  • Sanfeng Wu
  • Qian Niu
  • Wang Yao
  • Xiaodong Xu
  • Chuanwei Zhang

Detail(s)

Original languageEnglish
Article number045427
Journal / PublicationPhysical Review B - Condensed Matter and Materials Physics
Volume90
Issue number4
Publication statusPublished - 15 Jul 2014
Externally publishedYes

Abstract

The valley-dependent optical selection rules in recently discovered monolayer group-VI transition-metal dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic applications. However, in the presence of Landau-level (LL) quantization such selection rules are taken over by selection rules between the LLs, which are not necessarily valley contrasting. Using MoS2 as an example we show that the spatial inversion-symmetry breaking results in unusual valley-dependent inter-LL selection rules, which is controlled by the sign of the magnetic field and directly locks polarization to valley. We find a systematic valley splitting for all LLs in the quantum Hall regime, whose magnitude is linearly proportional to the magnetic field and is comparable with the LL spacing. Consequently, unique plateau structures are found in the optical Hall conductivity, which can be measured by the magneto-optical Faraday rotations.

Citation Format(s)

Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2 quantum Hall systems. / Chu, Rui-Lin; Li, Xiao; Wu, Sanfeng; Niu, Qian; Yao, Wang; Xu, Xiaodong; Zhang, Chuanwei.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 90, No. 4, 045427, 15.07.2014.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review