Utility-maximizing resource control: Diffusion limit and asymptotic optimality for a two-bottleneck model

Heng-Qing Ye, David D. Yao

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Citations (Scopus)

Abstract

Stochastic programming can effectively describe many decision-making problems in uncertain environments. Unfortunately,such programs are often computationally demanding to solve. In addition, their solution can be misleading when there is ambiguity in the choice of a distribution for the random parameters. In this paper, we propose a model that describes uncertainty in both the distribution form (discrete, Gaussian, exponential, etc.) and moments (mean and covariance matrix). We demonstrate that for a wide range of cost functions the associated distributionally robust (or min-max) stochastic program can be solved efficiently. Furthermore, by deriving a new confidence region for the mean and the covariance matrix of a random vector, we provide probabilistic arguments for using our model in problems that rely heavily on historical data. These arguments are confirmed in a practical example of portfolio selection, where our framework leads to better-performing policies on the "true" distribution underlying the daily returns of financial assets. © 2010 INFORMS.
Original languageEnglish
Pages (from-to)613-623
JournalOperations Research
Volume58
Issue number3
DOIs
Publication statusPublished - May 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Utility-maximizing resource control: Diffusion limit and asymptotic optimality for a two-bottleneck model'. Together they form a unique fingerprint.

Cite this