Using search engine big data for predicting new HIV diagnoses

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

13 Scopus Citations
View graph of relations



Original languageEnglish
Article numbere0199527
Journal / PublicationPLoS ONE
Issue number7
Publication statusPublished - 12 Jul 2018



Background A large and growing body of “big data” is generated by internet search engines, such as Google. Because people often search for information about public health and medical issues, researchers may be able to use search engine data to monitor and predict public health problems, such as HIV. We sought to assess the feasibility of using Google search data to analyze and predict new HIV diagnoses cases in the United States. Methods and findings From 2007 to 2014, we collected search volume data on HIV-related Google search keywords across the United States. State-level new HIV diagnoses data were collected from the Centers for Disease Control and Prevention (CDC) and We developed a negative binomial model to predict HIV cases using a subset of significant predictor keywords identified by LASSO. The Google search data were combined with state-level HIV case reports provided by the CDC. We use historical data to train the model and predict new HIV diagnoses from 2011 to 2014, with an average R2 value of 0.99 between predicted versus actual cases, and average root-mean-square error (RMSE) of 108.75. Conclusions Results indicate that Google Trends is a feasible tool to predict new cases of HIV at the state level. We discuss the implications of integrating visualization maps and tools based on these models into public health and HIV monitoring and surveillance.

Research Area(s)

Download Statistics

No data available