Urban heat islands in Hong Kong : Bonding with atmospheric stability
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | e1032 |
Journal / Publication | Atmospheric Science Letters |
Volume | 22 |
Issue number | 6 |
Online published | 16 Feb 2021 |
Publication status | Published - Jun 2021 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85101447427&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(aab427f4-1a37-43ef-a312-08a24adb090c).html |
Abstract
A barrier to urban heat island (UHI) mitigation is the lack of quantitative attribution of the various contributions to UHI intensity. This study demonstrates the daily and seasonal dynamics of UHIs in Hong Kong, a subtropical high-density city. The nocturnal UHIs of the city are grouped according to various dynamic stability conditions (neutral, weak stable, and strong stable) of the boundary layer. Results indicate that the stronger the atmospheric stability, the more intense the UHI. The atmospheric anomalies linked to these stability classifications are hence revealed. In summer, nights of neutral (strong stable) stratification are controlled by low (high) pressure with rising (sinking) motion, less (more) precipitation, and lower (higher) air temperature at the surface. In winter, the influence of the large-scale circulation system of the East Asian winter monsoon is significant. In the upper layer, the East Asian jet stream retreats westward (is displaced northward) on nights with neutral (strong stable) atmospheric stratification. At the surface, southeast China is hot and humid on neutral nights, while on strong stable nights, the coastal regions of southeast China are dry, and East Asia is dominated by positive surface air temperature anomalies. Atmospheric anomalies are generally nonsignificant on nights with weak stable stratification in both summer and winter. These findings provide potential predictors for UHI intensity.
Research Area(s)
- atmospheric anomaly, dynamic stability, Hong Kong, urban boundary layer, urban heat island
Citation Format(s)
Urban heat islands in Hong Kong: Bonding with atmospheric stability. / Wang, Weiwen; Chen, Bingyin; Xu, Yong et al.
In: Atmospheric Science Letters, Vol. 22, No. 6, e1032, 06.2021.
In: Atmospheric Science Letters, Vol. 22, No. 6, e1032, 06.2021.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available