Untangling dendrite growth dynamics in hybrid flow batteries

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number103864
Journal / PublicationEnergy Storage Materials
Volume73
Online published28 Oct 2024
Publication statusPublished - Nov 2024

Abstract

Despite advancements, dendrite growth at the anode continues to be a persistent roadblock in accelerating the widespread deployment of hybrid flow batteries as the next-generation energy storage solution, due to the significant impact of dendrites on cycling performance and the potential for battery failure. The ability to analyze energy storage systems at micro-to-macro levels offers unprecedented insights into their behavior and performance. Herein, we develop a multiscale model utilizing phase-field method to investigate dendrite formation, growth, and stripping under operational conditions. The Zn-I system is employed to unravel the intricacies of dendrite evolution and its mitigation through strategic utilization of critical battery parameters. Our findings not only uncover precise zinc morphologies but also provide valuable insights into battery performance toward developing a strategy for mitigating dendrite growth and enhancing battery efficiency at high current density. To our knowledge, this is the first work to comprehensively untangle electrodeposition dynamics at multiscale in the field of flow battery and related research. The findings revolutionize our understanding of deposition behavior, driving transformative advancements in hybrid flow battery design and development, with potential applicability to other battery systems. © 2024 Elsevier B.V.

Research Area(s)

  • Dendrite, Hybrid flow battery, Interface, Phase-field method