TY - JOUR
T1 - Unsupervised video shot detection using clustering ensemble with a color global scale-invariant feature transform descriptor
AU - Chang, Yuchou
AU - Lee, D. J.
AU - Hong, Yi
AU - Archibald, James
PY - 2008
Y1 - 2008
N2 - Scale-invariant feature transform (SIFT) transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT) for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.
AB - Scale-invariant feature transform (SIFT) transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT) for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.
UR - http://www.scopus.com/inward/record.url?scp=41149092237&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-41149092237&origin=recordpage
U2 - 10.1155/2008/860743
DO - 10.1155/2008/860743
M3 - RGC 21 - Publication in refereed journal
SN - 1687-5176
VL - 2008
JO - Eurasip Journal on Image and Video Processing
JF - Eurasip Journal on Image and Video Processing
M1 - 860743
ER -