Universal data warehousing based on a meta-data modeling approach

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

4 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)325-363
Journal / PublicationInternational Journal of Cooperative Information Systems
Volume12
Issue number3
Publication statusPublished - Sep 2003

Abstract

Data warehouse contains vast amount of data to support complex queries of various Decision Support Systems (DSSs). It needs to store materialized views of data, which must be available consistently and instantaneously. Using a frame metadata model, this paper presents an architecture of a universal data warehousing with different data models. The frame metadata model represents the metadata of a data warehouse, which structures an application domain into classes, and integrates schemas of heterogeneous databases by capturing their semantics. A star schema is derived from user requirements based on the integrated schema, catalogued in the metadata, which stores the schema of relational database (RDB) and object-oriented database (OODB). Data materialization between RDB and OODB is achieved by unloading source database into sequential file and reloading into target database, through which an object relational view can be defined so as to allow the users to obtain the same warehouse view in different data models simultaneously. We describe our procedures of building the relational view of star schema by multidimensional SQL query, and the object oriented view of the data warehouse by Online Analytical Processing (OLAP) through method call, derived from the integrated schema. To validate our work, an application prototype system has been developed in a product sales data warehousing domain based on this approach.

Research Area(s)

  • Data materialization, Frame metadata model, Object relational view, Schema integration, Unified modeling language, Universal data warehousing