Uniform asymptotics for Meixner-Pollaczek polynomials with varying parameters
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1031-1035 |
Journal / Publication | Comptes Rendus Mathematique |
Volume | 349 |
Issue number | 19-20 |
Publication status | Published - Nov 2011 |
Link(s)
Abstract
In this Note, we study the uniform asymptotics of the Meixner-Pollaczek polynomials Pn(λn)(z;φ) with varying parameter λn=(n+1/2)A as n→ ∞, where A>. 0 is a constant. Uniform asymptotic expansions in terms of parabolic cylinder functions and elementary functions are obtained for z in two overlapping regions which together cover the whole complex plane. © 2011 Académie des sciences.
Citation Format(s)
Uniform asymptotics for Meixner-Pollaczek polynomials with varying parameters. / Wang, Jun; Qiu, Weiyuan; Wong, Roderick.
In: Comptes Rendus Mathematique, Vol. 349, No. 19-20, 11.2011, p. 1031-1035.
In: Comptes Rendus Mathematique, Vol. 349, No. 19-20, 11.2011, p. 1031-1035.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review