Une inégalité de Korn non linéaire dans W2,p, p>n
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | French |
---|---|
Pages (from-to) | 905-911 |
Journal / Publication | Comptes Rendus Mathematique |
Volume | 353 |
Issue number | 10 |
Online published | 24 Aug 2015 |
Publication status | Published - Oct 2015 |
Link(s)
Abstract
Let Ω be a bounded and connected open subset of Rn that satisfies the uniform interior cone property and let p>n. We establish a nonlinear Korn inequality in W2,p, which provides an upper bound of the ‖{dot operator}‖W2,p(Ω)-norm of the difference between two immersions ϕ∈W2,p(Ω) and ϕ~∈W2,p(Ω) in terms of the ‖{dot operator}‖W1,p(Ω)-norm of the difference between their associated metric tensors ∇ϕT∇ϕ∈W1,p(Ω) and ∇ϕ~T∇ϕ~∈W1,p(Ω).Second, let Ω be a bounded, simply-connected, open subset of Rn with a Lipschitz boundary, the set Ω being locally on the same side of its boundary. Using the above nonlinear Korn inequality in W2,p, we establish the local Lipschitz-continuity of the mapping C∈W1,p(Ω)→ϕ∈W2,p(Ω), which is well-defined when the components of the Riemann curvature tensor associated with C vanish in D'(Ω), the immersion ϕ∈W2,p(Ω) being the solution, unique up to an isometry of En, of the equation ∇ϕT∇ϕ=C in Ω.
Citation Format(s)
Une inégalité de Korn non linéaire dans W2,p, p>n. / Ciarlet, Philippe G.; Mardare, Sorin.
In: Comptes Rendus Mathematique, Vol. 353, No. 10, 10.2015, p. 905-911.
In: Comptes Rendus Mathematique, Vol. 353, No. 10, 10.2015, p. 905-911.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review