Une approche intrinsèque d'un modèle non linéaire de la théorie des coques
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | French |
---|---|
Pages (from-to) | 232-242 |
Journal / Publication | Comptes Rendus Mathematique |
Volume | 355 |
Issue number | 2 |
Online published | 18 Jan 2017 |
Publication status | Published - Feb 2017 |
Link(s)
Abstract
We consider the model of a nonlinearly elastic “shallow” shell proposed by L.H. Donnell, V.Z. Vlasov, K.M. Mushtari & K.Z. Galimov, and W.T. Koiter. We show that the linearized change of curvature and nonlinear strain tensor fields appearing in the energy of this model can be taken as the sole unknowns of the problem, instead of the displacement field as is customary. In order to justify this “intrinsic approach” to this nonlinear model, we identify nonlinear compatibility conditions that these new unknowns must satisfy. These conditions are of Donati type, in the sense that they take the form of integral orthogonality relations against divergence-free tensor fields.
Citation Format(s)
Une approche intrinsèque d'un modèle non linéaire de la théorie des coques. / Ciarlet, Philippe G.; Iosifescu, Oana.
In: Comptes Rendus Mathematique, Vol. 355, No. 2, 02.2017, p. 232-242.
In: Comptes Rendus Mathematique, Vol. 355, No. 2, 02.2017, p. 232-242.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review