Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

32 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)447-458
Journal / PublicationJournal of Electroanalytical Chemistry
Volume819
Publication statusPublished - 15 Jun 2018
Externally publishedYes

Abstract

The analysis of capacitance data for regular nanostructured photoelectrodes is revisited using a hematite nanorod array as an example. The effects of the cylindrical nanorod geometry on the capacitance-voltage behaviour are outlined, and the limiting case of complete depletion is discussed in terms of the residual geometric capacity at the base of the nanorods. Since nanorod arrays generally leave areas of the substrate exposed, it is necessary to consider the parallel capacitance associated with the fraction of uncovered surface. The sensitivity of the capacitance fitting to parameter variation is explored. The enhancement of external quantum efficiency (EQE) by nanostructuring is also discussed using hematite nanorod arrays as experimental examples. It is shown that, although very substantial EQE enhancement should be achieved by simple geometric effects, the performance of nanostructured hematite electrodes in the visible region of the spectrum is considerably lower than predicted if all charge carriers generated in the space charge region (SCR) were collected. Further analysis reveals that the internal quantum efficiency increases with photon energy, suggesting that the probability of generating free, rather than bound, electron-hole pairs in hematite depends on the excess energy hν - Egap. © 2017 Elsevier B.V.

Research Area(s)

  • Hematite, Mott-Schottky, Nanorods, Quantum efficiency, Water splitting

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].