Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 447-458 |
Journal / Publication | Journal of Electroanalytical Chemistry |
Volume | 819 |
Publication status | Published - 15 Jun 2018 |
Externally published | Yes |
Link(s)
Abstract
The analysis of capacitance data for regular nanostructured photoelectrodes is revisited using a hematite nanorod array as an example. The effects of the cylindrical nanorod geometry on the capacitance-voltage behaviour are outlined, and the limiting case of complete depletion is discussed in terms of the residual geometric capacity at the base of the nanorods. Since nanorod arrays generally leave areas of the substrate exposed, it is necessary to consider the parallel capacitance associated with the fraction of uncovered surface. The sensitivity of the capacitance fitting to parameter variation is explored. The enhancement of external quantum efficiency (EQE) by nanostructuring is also discussed using hematite nanorod arrays as experimental examples. It is shown that, although very substantial EQE enhancement should be achieved by simple geometric effects, the performance of nanostructured hematite electrodes in the visible region of the spectrum is considerably lower than predicted if all charge carriers generated in the space charge region (SCR) were collected. Further analysis reveals that the internal quantum efficiency increases with photon energy, suggesting that the probability of generating free, rather than bound, electron-hole pairs in hematite depends on the excess energy hν - Egap. © 2017 Elsevier B.V.
Research Area(s)
- Hematite, Mott-Schottky, Nanorods, Quantum efficiency, Water splitting
Bibliographic Note
Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].
Citation Format(s)
Understanding the role of nanostructuring in photoelectrode performance for light-driven water splitting. / Peter, Laurence M.; Gurudayal; Wong, Lydia Helena et al.
In: Journal of Electroanalytical Chemistry, Vol. 819, 15.06.2018, p. 447-458.
In: Journal of Electroanalytical Chemistry, Vol. 819, 15.06.2018, p. 447-458.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review