Understanding molecular motor walking along a microtubule : A themosensitive asymmetric Brownian motor driven by bubble formation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

14 Scopus Citations
View graph of relations

Author(s)

  • Noriyoshi Arai
  • Kenji Yasuoka
  • Takahiro Koishi
  • Toshikazu Ebisuzaki
  • Xiao Cheng Zeng

Detail(s)

Original languageEnglish
Pages (from-to)8616-8624
Journal / PublicationJournal of the American Chemical Society
Volume135
Issue number23
Publication statusPublished - 12 Jun 2013
Externally publishedYes

Abstract

The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors. © 2013 American Chemical Society.

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.

Citation Format(s)

Understanding molecular motor walking along a microtubule : A themosensitive asymmetric Brownian motor driven by bubble formation. / Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro et al.

In: Journal of the American Chemical Society, Vol. 135, No. 23, 12.06.2013, p. 8616-8624.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review